
Machine Learning 
 
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN Andrew NG course 
 
Supervised learning 
⚫ Regression problem: predict continuous valued output 

⚫ Classification problem: predict discrete valued output 

 
Unsupervised learning 
⚫ Clustering problem: Here is the data, can you find some structure on them. A clustering algorithm can cluster the data in 

different clusters. 

 
 

---> Supervised Learning <--- 

Linear Regression  

Univariate linear regression 
Univariate (one variable) linear regression. For example find a linear function that maps the footage of houses (x) to their price 
(y). The official terminology for the function is “h” from hypothesis. m is the number of training examples. Hθ(x)=θ0+θ1*x. θ0 
and θ1 are the parameters of the model. The formalization of this problem is to Minimize over θ0 and Θ1 the sum of squared 
differences between predictions and real values [We multiply the sum by 1/2m, minimizing the (half of) average error in order 
to simplify the math along the way]. minimize over θ0 and θ1 means find the value Θ0 and θ1 that minimize this expression 
which is a function of θ0 and θ1. this expression J is called the cost function which is the objective function we want to minimize.  
 

 

Contour plots: represent a 3d graph in a 2d graph 
where continuous lines have the same value for the 
3rd coordinate. 

 
linear regression’s cost function is always a convex function which means that it doesn’t have local optima but only one global 
optimum. 
m: number of data points (training examples) 
n: number of parameters of the hypothesis function (number of features) that we want to fit to the data 
 
Gradient descent 
So how you minimize the cost function? One way is using the gradient descent algorithm 
 
In order to find the hypothesis that best fits the data, we need to find the hypothesis parameters that minimize the cost function. 
Gradient descent is one method that can be used to minimize a function, a function of the form J(θ0, θ1, ... , θn).   

 

Each point of the surface corresponds to a specific hypothesis function, which has its own cost 
value. You begin by selecting a random point in the surface. You consider one parameter as 
constant which means that you get a slice of the surface, which gives you a 2d function of the 
remaining variable. You want to move on that surface to the direction that makes the y value 
(the cost) smaller. The easiest way to do this is to calculate the derivative in the point in which 
you currently are. The derivative can be calculated by the data and the current hypothesis 
predictions. 

If the derivative is negative you have to move to the direction that increases the variable (and decreases the cost). Then you do 
the same for the other variable. The two movements, one in each direction gives you your total move and your new position on 

https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN


the surface. When you reach to a minimum the derivatives there would be zero so the algorithm will converge, meaning that the 
new values for the variables would be equal to the previous ones. 
 

 

 

 

The parameters of the cost function (θ0 and θ1 here) must be 
updated simultaneously meaning that we first find the new θ0 and 
then we find the new θ1 using the old θ0. Then we update θ0 and 
θ1 to get the new values. These describe a new hypothesis function, 
with a new cost value which is depicted as a point in the cost 
function surface. Then we repeat. As we approach a local minimum 
gradient descent will automatically take smaller steps since the 
derivative starts to approach 0 so it becomes smaller and smaller. 
So there is no need to decrease the learning rate (α) over time.  
You can calculate the formulas for the derivative terms and then 
use them to run gradient descent. 

 
Notice that if you try to minimize a random function that has many local optima, then gradient descent would converge to 
one of those local optima without searching for the global optimum. But what is important with linear regression is that 
its cost function is always a convex function which means that it doesn’t have local optima but only one global optimum .  
 
Batch vs stochastic gradient descent 
In a linear regression problem, at each step of gradient descent the gradient descent algorithm uses all the training examples. It 
calculates the next values for its parameters by minimizing the average cost (the squared distance from all training examples). 
This is called Batch gradient descent.  
I guess that in stochastic gradient descent you randomly select some training examples at each step, so you actually create a new 
cost function (a new surface) at each step which is an approximation of the real one and minimize there. As I saw most real 
world cases use stochastic gradient descent because it converges faster.  
 
The normal equation method 
Have in mind that in linear regression you can analytically calculate the minimum of the cost function without using an iterative 
process like gradient descent. That method is called the normal equation method. It has pros and cons, one advantage is that 
you don’t need to care about setting a proper learning rate since it doesn’t use such a thing. But it turns out that gradient descent 
scales much better for large datasets.  
 
Vectorization  
The partial derivatives of the cost function with respect to the parameters of the hypothesis are calculated in each time step and 
they include the calculation of the hypothesis for all the training data. We can just iteratively evaluate for each data point or we 
can reform the problem in a way that it can be calculated more efficiently. 



 

 

You just must create a Data matrix by adding a first column 
of ones. The vectorized solution is much faster and more 
compact. Prediction = Data Matrix * Parameters Vector 
 
Also, if you have more than one competing hypothesis and 
you want to calculate the price predictions for each one of 
them, you can vectorize it using matrix to matrix 
multiplication. 
 
Have in mind that Matrix multiplication is associative 
(A*B)*C=A*(B*C) but not commutative A*B != B*A 
  
 

 

Multivariate Linear regression  
(with multiple variables) 
The variables are also called features.  

Notations  

 

 

Now the hypothesis function that best fits to the data 
describes a multidimensional object (in case of two 
variables a two d linear surface).  

 
 
In order to express the hypothesis formulation in a 
vectorized form, we define an additional feature (feature 
zero x0) that has value of one. Using it we can write the 
hypothesis function as dot product of two vectors, the 
transpose of the parameters vector and the features vector. 
 hθ(x) = ΘΤx 
 

 
Minimizing the cost function in multivariate linear regression with Gradient descent 



 

The partial derivative of the cost function with respect to 
any parameter of the cost function has a common formula.  

 
So in multivariate gradient descent we just update more 
parameters in each step, not just two as in linear regression 
of one variable. 

 
Have in mind that the gradient of a function gives you the direction of steepest ascend. So, to decrease it you move to the opposite 
direction. The length of that vector gives an indication of how steep that curve is.  
 

Gradient descent 
 
 

Gradient descent tricks 
Feature scaling 
If the scale of the variables/features are similar (the range of values is similar) then gradient descent converges faster.  

 

 

If the scale is not similar, for example x1 (0-2000) and x2 (1-5) then if 
you select a good θ1 then θ2 has little effect on the cost. You can have a 
bad θ2 and still have a low total cost (since θ1 is far more important). 
On the other hand a small change in θ1 would have a big impact on the 
cost. 

This situation causes slow convergence to gradient descent. This happens since initially you get a big step towards the correct 
θ1 since the gradient of the cost function is big in the θ1 direction and within a couple of steps you have reached the minimum 
in the θ1 dimension. Then you must move along the θ2 direction which has a very small gradient (the slope in the vertical 
direction is very small) so the steps would be too small and since you have one learning coefficient you can’t increase it since 
this would cause a big step in the θ1 direction which would increase the cost.  
Maybe we can use two different learning coefficients one for each parameter? The common approach is to scale the data 
appropriately so that the cost contours are uniform.  

 

 

 

Feature Scaling  
The trick is to make them approximately to -1 to 1 range. 
This can be done by dividing each value of a feature with its 
range. 
 
You can also apply mean normalization to them, subtracting 
from each value of a feature its average value and divide 
with the range (or the standard deviation) 
 
These two steps define the general rule x=x-μ/s where s 
could be the standard deviation of the feature or its range. 

 
Feature choosing 
With Choosing/designing features you can achieve: 
⚫ Feature dimensionality reduction 

⚫ Polynomial regression (fitting more complex shapes to your data, not just simple straight lines) 

 



Dimensionality reduction 

 

If you have some insights about the problem you are studying, then you can 
use them to combine existing dependent features into a new one. This way 
you reduce the dimensions of the problem which makes it simpler to solve.  

  
Polynomial regression 
You can solve polynomial regression problems using linear regression mechanics, by appropriately redesigning the features.  

 

There are cases in which a polynomial function would be a better 
fit to the data than a linear function. For example assume you have 
a one variable problem (the size of the house). Assume that you 
know the size and the price of houses form a chart like this. In this 
case a cubic polynomial would fit well to the data. A quadratic 
polynomial would fit well to some values but it comes back down 
again for large values of x so we don’t want it. A cubic function 
would be better.  
 
The trick to use linear regression mechanics to solve polynomial 
regression problem is to redesign the features (feature choosing). 
in this case we can create two new features where the second and 
third are the size of the house squared and cubed respectively. But 
what is also important now, is to do a proper feature scaling. Then 
we can solve a linear regression problem to identify the correct 
parameters of the polynomial.  
 
Notice that if you just see the hypothesis function you would 
assume that it describes a 3 features problem, for which each 
feature affects linearly the price, but in reality it is a one 
feature problem (the size of the house) that affects cubically 
the price. 
 
Notice that you could also use another polynomial with a square 
root. Depending on your insights about the data you can design the 
features appropriately. 

 

 
 
Momentum 
(from another source) the model keeps traces of the past gradient directions and doesn’t recompute the gradient in each step 
but uses a previous gradient. It does this for some iterations. This way it might converge faster.  

 
 

 
 
Convergence  



The best way to understand if gradient descent has converged is to make a plot of the cost function relative to the number of  
iterations. When the plot starts to become parallel to the x axis gradient we can say that gradient descent has converged. Another 
way is to use automatic convergence which means to set a threshold ε and if the cost decreases by less than ε in one iteration 
then accept convergence. But it is not very easy to select the proper ε. 10-3 might be enough for one application but not for 
another,  

 

 

The cost must decrease in every iteration of gradient descent. If instead it 
increases you should probably decrease α.  

 
 
Practically you should try different α values to see how they behave. Testing a 
range for example 0.001 to 1 by increasing α by a factor of 3 each time. Select 
the biggest possible that converges. 

 
Normal equation method 
Linear regression problems can be solved analytically too, using the normal equation method. You have a multivariate linear 
regression problem. You add the zero feature. You have a cost function. You can find the extreme values of a function by equating 
its derivative with 0. This is the main idea. 

 

 

You have to equate with 0, all the partial derivatives of the cost 
function and then solve a system of equations for the value of the 
parameters. These values are the values that eliminate the partial 
derivatives and minimize the function (which is convex so we 
know that it has a global minimum). This would lead to a function 

that you have to solve:  

 

 

X is called the design matrix and its rows are the transposed 
feature vectors. y is the training data vector.  
 
So this means that you have to compute the XTX matrix and then 
invert it. This matrix would be a n by n matrix and the inverting 
operation has an efficiency of O(n3). this means that if the number 
of features is very big this operation would be very expensive 
which would make gradient descent far more efficient.  
 
Have in mind that some rare cases  XTX might be non-invertible. 
If a matrix has rows or columns linearly dependent then the 
matrix is not invertible, (matrix determinant = 0). Some reasons 
for that could be 1. that some features are linearly dependent or 
2. there are too many features (m<n). Notice that there are 
libraries that can handle non-invertibility and still solve the 
problem (pseudo-invertibility) 
 
Notice that you don’t need to perform feature scaling for the 
normal equation method. 

 

Batch, Mini batch and Stochastic gradient descent  
When you have a huge number of training examples (m is huge) you must sum over all these examples to calculate the partial 
derivative used in the gradient descent algorithm. You calculate which direction decreases the cost function for all examples. In 
the version of stochastic gradient descent, you calculate the error based on only one example. In mini batch you calculate the 
error based on b examples where usually 2<b<100. So you will make more gradient descent steps to reach to an acceptable 
solution but each step will be much faster. The steps will not go directly to the direction of biggest decrease, but they will wonder 
around the cost function somewhat randomly. Stochastic and mini batch gradient descent doesn’t find the global optimum, but 
it oscillates around it.  



 

Minibatch might be more efficient than stochastic gradient descent if 
you have a good library for vectorized calculations. The disadvantage 
is that you have an additional hyperparameter, the batch size, to 
tune.  

  
 
Checking for convergence 

 

Stochastic and mini batch gradient descent doesn’t 
find the global optimum, but it oscillates around it.  
 
To check convergence you plot the learning curve. 
These are some cases. In the case where it is flat, the 
algorithm doesn’t learn and you might try to find 
other features or more data etc.  
If it diverges use smaller learning rate a.  
 

 

In most cases we are ok with the result of stochastic 
gradient descent. But if we want a solution closer to 
the optimum we can try to decrease a as the 
iterations progress. Although this isn’t used often, 
because we have two additional hyperparameters to 
tune.  

 

Misc 
Minibatch  

• The only reason to use minibatch vs stochastic is the parallelization. 

• Its good to have in the minibatch samples that are different with each other.  

• Minibatch size determined by the hardware you have. For large ANNs and a gpu let’s say 16-64 

• If you increase the batch size too much (in a big cluster for example) you accelerate the calculation due to increased 

parallelization but you decrease the speed of convergence. So there is a limit until which it has meaning to increase the 

batch size. 

• The size must not be larger than the number of classes 

 
A tip on normalization 



Notice that when you normalize the features you might not need to calculate the mean and deviation based on all dataset, 
because these quantities converge quite fast.  
 
Normalization on the weighted sum values 
Apart from normalizing the features, it’s been shown that it is also important to normalize the internal state of the ANNs too, the 
weighted sum values in other words. A technique to do this is called batch normalization. I guess that t1his is the reason why 
you initialize weights with He and similar techniques. They try to achieve a weighted sum which is in the same range as its inputs 
(zero mean and unit variance)  
 

Logistic (sigmoid) Regression 
For classification problems (the outputs are discrete values) 

 

Linear regression is not good for classification problems. You might get lucky 
and it might produce good predictions (using a threshold classifier output) 
but just one outlier can make it worthless. 

 

 

In logistic regression we want the prediction h(x) to be between 
0 and 1. To achieve that we transform h(x) (passing through a 
function g) in such a way that it would always produce values in 
the desired range. Specifically we transform it to a logistic 
(sigmoid) function.  
In linear regression h(x)= θΤx while in logistic regression we pass 
that through the sigmoid function. Now a training point xi 
corresponds to a specific z value (z=θΤx) and this z value has a 
g(z) output which is the prediction value between 0 and 1. 

 

We interpret the output of the prediction function as a probability 
of the specific input to give 1 as output. For example for a specific 
x1 if h(x1)=0.7 it means that the feature (the characteristic) with 
value x1 has 70% probability of being 1 (whatever 1 might mean, 
for example cat). 
The formal way of saying this is by saying that the prediction h(x) 
gives the probability that y=1 given x parameterized by θ. 

 

Have in mind these values. A value of 4.6 corresponds to a logistic 
value of 0.99 and -4.6 to 0.01 

 

 

As with linear regression we try to minimize the cost by 
finding the proper parameter values θ.  
 
For a given data point x, each different θ gives a different z 
which gives a different g(z). By modifying θ you don’t affect 
the logistic function which is always the same, being 0.5 for 
z=0. 
 
What we do is this. For each training point (x,y) if y=1 then 
we say that the correct prediction for that x, is h(x) or g(z) 
to be >= 0.5. But g(z) is >= 0.5 when z>=0 or θΤx>=0. This 
means that for points of the data set that have y=1, θΤx must 
be >=0.  
 



 

 

Suppose that you have somehow calculated the correct 
values for the parameters θ, in this example [-3 1 1]. The 
function  θΤx expands to -3+x1+x2. If we want to predict 1 
for points x for which y=1, then as we said we want  θΤx>0 -
> -3+x1+x2>0 -> x1+x2>3. This equation defines a line. If 
a point x is on the right of that line then z or θΤx would be 
greater than 0 and g(z) would be greater than 0.5 so the 
prediction would be 1. This line is composed of all points x 
for which the prediction is exactly 0.5 and is called the 
decision boundary. The decision boundary is a property of 
the prediction function (of its parameters) and not of the 
training data (the parameters though are chosen based on 
the training data). In linear regression we plot the 
prediction function itself, while in logistic regression 
we equate it to 0 which makes it a whole different 
function (the decision boundary) and plot that. 
 
As with polynomial regression we can add some polynomial 
terms to the prediction function in order to achieve non-
linear decision boundaries.  

 
If z has a large variance it takes values that span the non linear part of the g(z).  
 

 

 

 
 

If we use the linear regression cost function due to the fact 
that the h(x) is now a non linear function (the logistic 
function), the squared cost function J(x) would be non-
convex. This means that gradient descent would not be 
guaranteed to converge to the global minimum. So we have 
to define a different cost function.  
 
The new cost function is actually two functions.  
This way if y=1 and the prediction h(x)=1 the function -
logh(x) gives 0 which means that the cost is 0 since the 
prediction is correct. But if the prediction is 0 then the cost 
is infinite.  
The opposite applies to cases for which y=0.  
 
We chose that specific cost function based on maximum 
likelihood estimation. It also has the nice property that it is 
convex. 
 

  



 

 =  

The cost function can be written in the following form too: 

 
which is a more compact form. Notice that the first term is a 
product of a quantity with y and the second term a product 
of a quantity with 1-y. so if y=1 the second term becomes 0 
and when y=0 the first term becomes 0.  
 
It turns out that the partial derivative of this cost function is 
of the same generic form with the one for linear regression 

with the difference that now 
xexh − 

+= 11)( . We can 

also vectorize the calculations. 
 
Have in mind that feature scaling is also needed for gradient 
descent to converge efficiently in logistic regression too.  

 
Other optimization algorithms 

 

Apart from gradient descent there are other optimization 
methods too, that usually converge much faster. In addition 
you don’t have to explicitly define the learning rate since 
they use a line search algorithm to automatically define a 
learning rate which can be different for each step.  
Similar to gradient descent these algorithms use the cost 
function and its partial derivatives so you need to provide 
these to them. 
Their disadvantage is that they are more complex to 
implement so you need to pick a library that uses a good 
implementation. 

 
Multiclass classification 
One versus All method 

 

 

One method for doing it is the One vs All method where we 
train a logistic regression classifier for each class. Then 
when we have a new data point and we want to classify it 
we calculate the predictions from all classifiers and the one 
that is more certain about the new input wins.  

 

Overfitting  

Intro 
Overfitting means your model does much better on the training set than on the test set. It fits the training data too well and 
generalizes bad. The main reason for overfitting is sparse data.  
 



 

 

We say that the hypothesis has high variance or high bias.  
 
High bias (underfit) 
For example, if we use a line, the model has a preconception 
that the price of houses depend linearly on the size despite 
the data to the contrary  
 
High variance (overfit) 
If we use a high order polynomial then it has the possibility 
to fit to a great variety of data sets, it is very flexible, the 
space of possible hypothesis is too large, too variable and we 
don’t have enough data to constrain it to give us a good 
hypothesis 
 
 
 

 
Why too many features cause overfitting 
Adding more features expands the hypothesis space making the data more sparse and this might lead to overfitting problems. 

 

 



 

 

 
 

Addressing overfitting 
⚫ Plotting the hypothesis 

When we have only one or two features it is very easy to plot the hypothesis function over the features (a 2d or 3d plot) and not 
only guess what polynomial order we want to use for the hypothesis but also check at the end if the hypothesis is overfitting to 
the data. If it does then we can choose a polynomial with lower order and try again. When we have many features though it 
becomes difficult to visually understand what’s happening. In these cases we must use other techniques to address overfitting. 
⚫ Reduce the number of features 

One way to address overfitting is to reduce the number of features. We can either select manually which features to keep or use 
a model selection algorithm that automatically selects which features to keep. The disadvantage is that all features might be 
important so by omitting some, we lose valuable information. 
⚫ Regularization 

Reduce the magnitude of the parameters θ. works well if all features contribute a bit to predicting y so we can’t reduce the 
number of features.  
 

Neural networks 
A Neural network is a classifying algorithm that is useful for the creation of non linear hypothesis (non linear function of the 
input). For problems with many features it is a much more efficient classifier in relation to logistic regression.  

 
The input to the classifier is the intensity values of the pixels of 
the input image. It has to classify the input as car or non-car 
based on them. So the number of input features is the number 
of pixels.  

Theoretically you could use polynomial logistic regression 
but the problem is that the number of quadratic terms (x12, 
x1x2, x1x3, … x1xn) in the hypothesis polynomial is O(n2/2) 
and the number of cubic terms is O(n3). So for a problem 
with n=100 features you end up with hundreds of 
thousands of “designed” features (the high order terms) in 
the hypothesis. This would result in overfitting and 
performance problems and make it a non viable solution. So 
we need an alternative.  
 
A picture 50 by 50 pixels has 2500 pixels. If we use the 
greyscale values for describing pixel intensity and use them 
as features for a classification problem, then we have 2500 
features which would lead in millions of designed features 
in a polynomial hypothesis.  
(the chart’s axis are pixel intensity values) 

 
An alternative classification algorithm is an artificial neural network.  



 

 

 

A neural network defines a function h that maps from an 
input space x to a prediction space y. By varying the 
parameters Θ (which are now called weights) we get a 
different mapping, or in other words a different function or 
hypothesis h. 
 
Each neuron’s sum of weighted inputs, pass through a 
logistic function g and the output of that is the neuron’s 
output. This applies also to the output layer. So in this 
setup neurons output (activation) is always between 0 and 
1. The hypothesis is the activation of the only unit of the 
output layer which is also between 0 and 1. 
 
Notice that there is also an additional input x0 which is not 
always shown in the graphs, that is called a bias unit and 
has a value of 1 (x0=1, though its weights might change).  
Why do we need it? see explanation below.  
 
(a1(2) stands for “activation”, meaning the output value of 
the first unit of the second layer) 
 
This process of computing h(x) is called forward 
propagation. We propagate the activation of the input 
units (the input values) forward to the next layer’s hidden 
units and so on. 
 
The calculations for forward propagation can be 
vectorized. Notice that we add also a bias unit to the hidden 
layer whose value (activation) is 1. These activation values 
will be weighted and similarly will produce the final output 
(the activation of the output unit) 

 
Neural network as logistic regression 

 

 
 

If you have a neural network with no hidden units 
then it works exactly as a logistic regression 
algorithm. The hypothesis produced is g(z) where z= 
θΤx.  
 
If instead there is a hidden layer then the inputs to the 
output unit are not the original features but some 
other values, some other new complex features that 
have been learned from the original ones with logistic 
regression. Each hidden unit represents a new 
complex feature. This mechanism allows the ANN to 
be able to form very complex non linear hypothesis to 
fit to the input data.  
 
The units of the last layer of a ANN (as any other unit 
of an ANN) are doing logistic regression on their 
inputs.  

XNOR: Sometimes referred to as an "Equivalence Gate," the gate's 
output requires both inputs to be the same to produce a high output. 

Implementing some logical functions with ANNs. The 
XNOR implementation requires a hidden layer which 



 

is composed of two units each of which calculates a 
slightly more complex function of the inputs, namely 
AND and (NOT x1)AND(NOT x2). Then these more 
complex inputs are used to implement an even more 
complex output. This gradual complexity is the 
reason why ANNs could form really complex non 
linear hypothesis (and thus decision boundaries).  

 

 

For multi class classification we use a method similar 
to the One vs All in logistic regression. We have one 
output unit for each class. This time the output is a 
vector.  

 
Why we need a bias 
A simple way to understand what the bias is: it is somehow similar to the constant b of a linear function y = ax + b. It allows you 
to move the line up and down to fit the prediction with the data better. Without b the line always goes through the origin (0, 0) 
and you may get a poorer fit. 
 

Consider this 1-input, 1-output network that has no bias 

 

In effect, a bias value allows you to shift the activation 
function to the left or right, which may be critical for 
successful learning. 
 
Changing the weight w0 essentially changes the 
"steepness" of the sigmoid. That's useful, but what if 
you wanted the network to output 0 when x is 2? Just 
changing the steepness of the sigmoid won't really 
work -- you want to be able to shift the entire curve to 
the right. 
 
That's exactly what the bias allows you to do. If we 
add a bias to that network, like so: 

 
Having a weight of -5 for w1 shifts the curve to the 
right, which allows us to have a network that outputs 
0 when x is 2. 
 
How it works: The bias (multiplied by its weight) is 
added to the weighted sum before it passes through 
the sigmoid function. If it is -10, then for the specific 
feature to be recognized (the sigmoid to be > 0.5) the 



 

sum without the bias should be > 10 instead of simply 
greater than 0. So the sigmoid has been shifted to the 
right. This kind of makes this specific feature to 
need a large degree of certainty in the input, for it 
to be activated. Another way to think of the bias is 
a number that makes the specific neuron to tend 
to be active or inactive.  

 
 
 

 
 
Cost function 
The cost function is a generic form of the logistic regression cost function. The first term sums the cost of each output unit for 
each training data point. The regularization term just scales all the weights of the network except from the bias units since we 
don’t want them to become 0. The reason that we added them in the first place was to contribute some non zero input to each 
layer.   
 

 

L: is the number of layers 
sl: is the number of units (not counting the 
bias unit) in layer l.  
k: is the number of output units 

 

Support Vector Machines 

SVM for linear boundaries 
SVM for linear boundaries is a large margin classifier 

 

It is an other classification algorithm that offers some computational advantages and an 
easier optimization problem in relation to logistic regression. It can model both linear and 
non linear decision boundaries.  
In case of linear boundaries the characteristic of SVM is that it produces a large margin 
boundary. In both cases there are mathematical tricks that formulate the problem in such 
a way that it is computationally efficient. The first one is the linear cost function. Another 
one for the linear case is the large value of C which gives the large margin.  
For the non linear case we use the kernel method and a trick is the transformation of the 
regularization term of the cost function. In all cases the SVM optimization is a convex 
optimization problem (the cost function is convex) so a global minimum will always be 
found (as opposed to using a neural network) 

 



 

The pink lines are the SVM cost functions 
relative to z. They are a linear approximation 
of the logistic regression cost functions. This 
is what makes SVM more computationally 
efficient. 

 

 

The cost function is transformed to CA+B 
instead of the A+λB of the logistic regression 
where C=1/λ (it doesn’t mean that if C=1/λ 
then the two expressions are equal. It means 
that the optimization of the two expressions 
will give the same optimum values) 
 
An other difference is that it produces 1 or 0. 
not like logistic regression which can give 
probability (for example 0.8) 

 
The reason why SVM is a large margin classifier 

 

When C is very large (let’s say 100000) which means 
that λ is very small so that regularization is small (and 
variance is large), the SVM model has an interesting 
property. It tries to separate the positive and negative 
examples with as big of a margin as possible.  
 
The big margin is a consequence of the minimization 
problem the objective function of which contains only 
the B term for large values of C.  



 

 

 
A large margin classifier is sensitive to outliers (because 
it has large variance so it has space for “overfitting”). The 
larger you choose the C to be, the more sensitive SVM 
will be to outliers and will produce the purple line 
instead of the black one, in a case like this.  
If the C is a bit smaller (but still large so that you get this 
large margin effect) SVM can handle outliers like in the 
example, or can even be used for cases that are not 100% 
linearly separable but have some outliers within the 
opposite region.  

 

 

 

Here is the mathematical explanation of the reason for 
which the minimization problem leads to a large margin 
decision boundary when C is very large. 
 
We transform the objective and constraints expressing 
them as vector norms and dot products. θΤx is a dot product 
between the two vectors, which can be represented as the 
multiplication between the projection of x to θ and the norm 
of θ.  
 
(θ0=0 means that the decision boundary passes through the 
origin) 
 
It can be proven that the vector θ is orthogonal to the 
decision boundary. Knowing that, we can measure the 
projections of vectors x to θ and conclude that a decision 
boundary with big margin gives larger projections in 
relation to one with small margin. 
If the projections are small, then the norm (magnitude) of θ 
should be large so that p*θ>1. But the objective is to 
minimize norm of θ. So the SVM optimization will not 
produce such a solution. Instead it will produce a solution 
where the projection to the θ are large so that θ can take 
small values.    

 



SVM for non linear boundaries 

 

We use the kernels method. We select some specific points in the 
feature space which are called landmarks denoted by l, and the 
hypothesis learns to predict 1 for input points close to some of them 
and 0 for input points close to the rest of them. The result is the 
formation of highly non linear decision boundaries.  

 

 

 

 
 

First we select some landmarks 
Then we compute new features denoted f, based on the 
proximity of the original inputs to the landmarks. This 
means that we transform each input vector x to a vector f 
the dimensionality of which is given by the number of 
landmarks, since each input vector x which can be 
represented by a point in the graph, has one 
proximity/similarity value for each landmark (so if the 
number of landmarks is smaller than the number of 
features then we are performing a dimensionality 
reduction).  The hypothesis is formulated as a first order 
polynomial of the new features f (instead of a high order 
polynomial of original features x). The similarity of an 
input vector with a landmark is given by a specific 
function which is called a kernel. One type of kernel is the 
Gaussian kernel. 
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where |x-l| is the magnitude of the distance 

between vector x and l that can be calculated by 
subtracting their components.   
 
What the kernel does, is to produce a value close to 1 if a 
point is close to a landmark and close to 0 if it is far from 
it. Specifically, when an original feature x is close to a 
landmark the Gaussian kernel gives a value close to 1, so 
the feature that describes the similarity with that 
landmark would be close to 1. If an original feature x is far 
from a landmark then the feature value that describes its 
similarity with that landmark would be close to 0.   
The σ coefficient defines the smoothness of the kernel or 
in other words the area around the landmark, within 
which a point gets a value close to 1. In the example of the 
graph, the landmark location is at x1=3, x2=5.  
 
Selecting landmarks   



 

 

 

What we do in practice is to select as landmarks all the 
points of the training set. So the parameters θ will be of 
the same size with the training set and not larger, since in 
SVM with kernels we only use linear features 
(θ0+θ1f1+θ2f2+...θmfm). We don’t use higher order 
polynomials for the hypothesis.  
 
In this case we don’t use a large value for C as we do for 
linear boundaries. A trick that makes the minimization of 
the cost function more efficient is to transform the last 
term as ΘΤΜΘ where M is a matrix that depends on the 
kernel we use.  
 
 

 
You could apply kernels to logistic regression too, but the reason that we don’t is that the computational tricks that make kernels 
in SVM run efficiently, don’t apply to logistic regression. 
 

Tips for running SVM 
(with a library) 

 

One other commonly used kernel is the “linear kernel” 
which means that we don’t use a kernel but instead we use 
a linear hypothesis function (first order polynomial) of the 
original inputs x. it is just a linear classifier (forming a linear 
decision boundary). y=1 if θΤx>=0. this can be useful in 
cases which the number of features is large and the number 
of training examples is small, so if you use a high variance 
hypothesis you might risk overfitting.  



 

Notice that we must do feature scaling before using the 
Gaussian kernel, so that the SVM gives the same weight to 
all features and not just to the one with larger values.  
 
 
 

 

Mercer’s Theorem 
In almost all cases SVM use either Gaussian or linear 
kernels. 
 
A kernel must satisfy this condition so that it allows us to 
use a large class of optimization to solve efficiently.   
 
String kernel: Similarity between two strings 
 

 

Multi class classification 

 

When m is huge SVM with Gaussian kernel might be slow.  
 
In general algorithms are important but what is more 
important you have and how skilled you are in error 
analysis and debugging of your algorithm, to designing new 
features etc. 

---> Unsupervised Learning <--- 

K-means  
It is an unsupervised learning algorithm. 
It is an iterative algorithm with two internal steps. The first one is the cluster assignment and the second one the move 
centroid step. It iteratively repeats these steps until convergence when no or only a few inputs change cluster after a move 
centroid step. It turns out that you can define a minimization problem for K means but the objective function is not convex so 
you might stuck to local optima.  

    



 

   
 

 

 

Random initialization of centroids the number of which is 
equal to the number of clusters that we want to identify. 
Each data point is assigned to a centroid based on which one 
is closest to. 
The centroids are moved to the average position of their 
assigned examples and cluster assignment is repeated.  
 
If a centroid has zero inputs associated with it then we 
either completely remove it from the centroids or randomly 
reinitialize it.  
 

 

K means can also work for non separated clusters. 

 

 

It turns out that you can define a minimization problem for 
K-means so that the process will stop when the optimum 
values c and μ are found. The cost function measures the 
average distance of each data point from its cluster centroid 
and is called the distortion of the k-means algorithm.  
 
 

 

The cluster assignment step which assigns each point to the 
centroid that is closest to it, actually minimizes the 
distortion (the cost function) with respect to c holding μ 
fixed, since it minimizes the distance of the points from their 
assigned centroid.  
While the move centroid step minimizes the cost with 
respect to the centroids, since by moving to the average 
position minimizes the average distance from it.  
 
So the minimization is done in two steps.  



 
Local and global optima 

 

 

 

The objective function is not convex so you might stuck to local optima. 
The solution which will be found, depends on the selection of the initial 
centroids.  
A typical way to initialize them is to randomly pick k data points and 
define the centroids there.  

 
For k between 2-10 there are high chances of being locked in local 
optima so the solution is to run k means with a lot of different 
initialization values (50-1000 different runs) record the final cost 
function for each one and pick the one with the lowest.  
Notice that if k is very large, larger than 10 for example, then there are 
very low chances of being locked in a local optimum so you can avoid 
the multiple initialization approach.  

 

 

 

Choosing the number of clusters is mainly a manual process. 
There is a method called the elbow method but it is not 
always applicable.  
 
One other common way is to choose it based on a business 
need and then evaluate the selection based on the 
performance on the actual business.  

 

Principal Components Analysis 
Principal Components Analysis (PCA) is the most common algorithm used for dimensionality reduction (reduction to a linear 
supspace) 
 
Dimensionality reduction 

 

When you have highly correlated features (for example the 
length in cm and in inches) then you can combine these 
features into one. The line in the example is not a perfect line 
due to round off errors. 
 
You do this by projecting the points in a line or a surface or 
an equivalent lower dimension object.  
 
For example if you have 50 features describing a country’s 
state (GDP, mortality, literacy etc.) you could maybe 
decrease the number of features to two, one that describes 



 

the state of the country as a whole and one that describes 
the state of the country per capita.  
 
The most used algorithm for dimensionality reduction is 
Principal Components Analysis (PCA).  

 
Principal Components Analysis 
It tries to find a lower dimension surface (of lower dimensions in relation to the original feature space) onto which to project 
the data. This surface is found by minimizing the square of the projection errors (the distance that the data points must be 
moved). In other words, we want to get the original data set which is an n dimensional object (x->Rn) and find a lower dimension 
representation of it (z >Rk). The number k is the number of principal components that we retain. Actually what PCA does is 
trying to compresses the data by keeping as much information from them as possible. You can also go from the compressed data 
back to an approximation of the original data (reconstruction from compressed representation).  
 

 

In case of a reduction from n to k dimensions, we want to 
find k n-dimensional vectors (which define a k dimensional 
space) and project the data onto the linear subspace 
spanned by these vectors. 
 
Have in mind that you need to perform Mean normalization 
and scaling before applying PCA.  
 
 

 

Notice the difference between PCA and linear regression. 
PCA tries to minimize the projection distances (called 
projections errors in the context of PCA) while linear 
regression tries to minimize the prediction error which is a 
different distance. This means that the optimum solution 
would be different for each algorithm. 

 
PCA algorithm implementation 

 

Sigma is the covariance matrix 
(multiplying features with each other, see 
below for intuition).  
Then we calculate the eigenvectors of this 
matrix which will be as many as the 
dimension of this orthogonal matrix, 
which is the dimensions of the original 
feature space. If we want to represent this 
object with a k dimensional space we 
select the first k eigenvectors (the first k 
columns)  
The new input vectors z are calculated by 
multiplying the selected eigenvectors 
matrix with the original feature vectors.  



 

 

The mathematical proof of why this process results in the k surface that minimizes the projection errors is not presented.  
 
In more detail 

 

 

 

The covariance matrix always satisfies a mathematical property 
called symmetric positive semi definite, so the svd (singular 
value decomposition) and eig octave methods give the same 
result, the same eigenvectors. The svd is numerically more stable 
than the eig method.  
 

 

 

 
Choosing k 



 

A way to get an insight for it is to think the 3d to 2d 
reduction. If the points are more or less upon a plane then 
the projections would be small and the ratio would be small. 
But if there are scattered all over the 3d space then the 
projections would be large and so will be the ratio. 
 
So you choose the least amount of principal components 
so that 99% of variance is retained. So you can compress 
the data by a large factor by keeping a very high percentage 
of its variance.  

 

You don’t have to do the first option of iterating through k 
and running PCA for each one. It turns out that the ratio can 
be calculated from the S matrix which is diagonal. So you run 
PCA once and then just iterate k to compute different ratios 
and find the one that you want.  
 
95 to 99% retained variance is a commonly used range and 
it is usually retained by a 5-10 times fewer dimensions. 

 

 

 

 
Good and bad use of PCA 

 

PCA is used for compression or visualization purposes (to 
make some reduction to 2d or 3d so that you can visualize 
something useful) 

 

Typical application in supervised learning. 
 
Notice that we only use the training set for finding Ureduce. 



 

But PCA must not be used without reason since despite the 
fact that it can retain a high variance of the data, it 
doesn’t take into consideration the labels (the y values) 
and this means that you might lose some valuable 
information. 
 
Don’t use it for overfitting, use regularization instead. 

 

Don’t use it if you can do it with the original features. 

 

Anomaly detection 

Gaussian distribution 

 

We generally consider that the examples of the dataset are 
non-anomalous. We want an algorithm to tell us if a new 
example xtest is anomalous. We do it like this: Given this 
unlabeled training set we will build a model p(x) that gives 
the probability of x. then if a specific xtest has very low 
probability lower than a threshold, then we say that it is an 
anomaly.  
The problem of estimating p(x) is called the density 
estimation problem.  

 

Applications of anomaly detection 
 
Some possible features used for fraud detection: 
1. How often a user logs in 

2. The number of pages he visits per session 

3. The number of transactions per day 

4. The number of posts of the user in the forum 

5. The typing speed of the user 

 
The Normal (Gaussian) distribution 

 

 



 

If you suspect that the samples are distributed according to 
a normal distribution then you can try to estimate the values 
of the parameters μ and σ from the dataset (for each 
feature). The estimates calculated by these formulas are the 
maximum likelihood estimates of the parameters μ and σ.  
 

 
 
.  

 

Try to think features that describe the general properties 
of the system that you examine hoping that some of them 
would take small or large values in unusual cases 
 
There are vectorized versions of parameter estimation 
 

 

We assume that each feature is distributed according to a 
normal distribution which we want to estimate. We also 
assume that the features are independent with each other 
so the probability of a specific feature vector (a 
combination of specific feature values) is given by the 
product of its individual feature s probabilities.  
 
Notice that we assume independence on the values of the 
features, but it turns out that this algorithm works well 
even if the features are not independent.  

 

 

 
Evaluating anomaly detection 
in order to evaluate it we need a small number of known anomalous data points. We fit a model p(x) using the training data set 
of known non anomalous data points and we split the anomalous points to the CV and test sets. We use the F1 score 
(precision/recall trade off) for evaluation since the classes that we have are very skewed because we only have a small amount 
of known anomalous data. A small number of anomalous data points can be contained in the training set without affecting the 
whole process.  



 

 
Try many ε values and pick the one with the larger F1 score. 

 
Vs supervised learning  

 

 

 
Choosing features 
Choosing features is critical on how well your anomaly detection algorithm works 

 

-is the feature a normal distribution? 
Transform data to make it more like a normal distribution 
(for example take log(x+c), or x1/c etc). so xnew=log(x) 

 
 

 

By examining the green example which is an anomaly that 
wasn’t captured by the x1 feature we can understand that 
there is another additional feature x2 that makes this 
example being anomalous.  
Choose features after an error analysis (manually checking 
the error predictions of the algo and modify your features 
accordingly).  



 

Chose/create features that take enormously large or small 
values in case of anomaly 

 

Multivariate Gaussian distribution 
 

 

Assume you have the upper left corner green 
example. If you have just two features that follow the 
normal distribution, then the green example is 
within the normal examples for each individual 
normal distribution. But obviously it is an anomaly. 
The reason that it is not caught, is that having two 
features with normal distribution assumes a circular 
probability surface (the pink circles). But, we want 
the blue ellipsis.  
 

 

The solution is a multivariate gaussian distribution 
which gives a probability distribution as a function of 
both variables (actually as a function of their mean 
and their covariance matrix). 
 
Σ is the covariance matrix.  

 
The covariance matrix  

 
 

The diagonal of Σ simply shows the variance of each single 
feature. 

 
If there is a covariance between the features you get this kind 
of probability distributions.  
 



 

Have in mind that the surface or volume (or higher) of a 
probability distribution is 1.  

 
Putting it together 

This is how you calculate μ and Σ 

  
 

 

Notice that the original model (Gaussian for each feature) 
is a special case of the multivariate case, where the axis of 
the gaussian distribution are parallel to the features axis 
(there is no covariance between features).  
 
 

  

The original model is much more efficient 
computationally, because the multivariate case 
requires matrix inverting, so it is always preferred if 
possible. 
 
If there is a rare combination of feature values (like in the 
example that was considered normal but was in reality 
anomalous) then in order to use the original model, you 
can redesign your features. For example take the ratio of 
the two features. This way even if the values are normal for 
each feature individually, the ratio of the values would be 
not normal.  

Non invertible covariance matrix 
• If you have redundant (linearly dependent) features (x1=x2, x3=x4+x5 etc.) then the covariance matrix might not be 

invertible and multivariate gaussian couldn’t be used. 

• If m<n 

 

Recommender systems 



Collaborative filtering (automated feature choosing) 

 

If we have the features and their values we can make linear 
regression to each user to calculate the θ parameters that 
form a hypothesis that match the user’s ratings. Then use 
that hypothesis to predict what rating the user will give in 
new movies and recommend to them movies that they will 
like. 
 
 

 But in the general case we don’t have the features. There is 
a way to find them automatically though. If we somehow 
have the θ parameters for each user (we ask them to tell us 
what movies they like), we can use it to calculate the feature 
values. It is the same formulas as linear regression but now 
you have Θ and solve for x.  

 

But what happens if you don’t have nor θ neither x? then you 
can guess a random initial Θ and estimate a x from it. notice 
that you must choose the number of features, so the number 
of parameters θ, but you don’t know what these features are. 
Then use that x to estimate a new better θ and so on until 
convergence. This is the collaborative filtering algorithm. 
initially you don’t know what these learned features 
represent, but you can introspect them and see. For example 
if you have used two features, the algorithm might learn the 
“romance” and “action” features on its own. 
 
For this collaborative filtering technique to work, each user 
must have rated many movies and each movie must be rated 
by many users.  

 
Vectorized implementation  
Also called low rank matrix factorization 

 

Y is the matrix of ratings. Num of columns is the 
num of users. Num of rows is the num of movies.  

 



 

 

 
Mean normalization  
Sometimes it might be useful to so mean normalization to the data as a pre processing step. This would be useful to predict 
ratings for users that haven’t rated any movie. The prediction would be that they will rate a movie with its mean value.  
 

Large scale machine learning tricks 
Tricks to help the efficiency of ML algorithm when dealing with big data (100m examples etc.) 
 

Online learning 

 

When there are a lot of data coming in real time, for example 
website visitors on a large website, you can implement 
online learning on them. You use each new example and 
train your algorithm with just this example. Then you 
discard this example. This is the point. Not having to store 
and handle all that data. The first hypothesis is not good. But 
as new examples come in the hypothesis keeps improving. 
It also responds to changes in the trend.  
If your real time data is not large, then you have to group 
let’s say 1000 examples and train a model on them and 
continue like this in batches. This is not online learning.  

 

Map Reduce 
This is a very important technique that allows many real world cases to run fast. It is as important as stochastic gradient descent. 
There are popular implementations of map reduce like Hadoop. 

 

 

You have a cluster of machines. You split the training set 
into equal parts, and send each part to a different machine 
in the cluster. This is the map step.  
Each machine calculates the summation over the examples 
in its part. Then the result is send to a master node that 
combines them together to calculate the total sum. This is 
the reduce step.  
 
If an algorithm’s main computation load is to compute 
sums of many terms, then you can easily parallelize that 
work with map reduce.  

 

ML pipelines 



 
 

 
 
Text detection 
It works with a sliding window. Notice that for pedestrians it’s easier to identify them because the aspect ratio of a human is the 
same no matter his size. But for the text this is not the case.  
For pedestrians you train a classifier to detect pedestrians for images of a certain aspect ratio. You get a sliding window of a 
small specific aspect ratio and parse the image. Then with a larger one and so on. Notice that the classifier that you trained, gets 
a 82*36 pixels image as input to tell if there is a pedestrian or not. So for the larger windows you have to resize the sliced image 
to that size.  
For text you train a classifier to detect letters in a rectangular image.  Notice that you have to do data augmentation to get more 
data for your classifier. Then you parse the image with windows of various sizes. Then you enlarge the areas that have letters 
and form a parallelogram around the areas that have all text.  
 
Character segmentation  

 

 

You train a classifier to detect if there is a character split in 
an image of specific size. Then you use a sliding window on 
the detected text of the previous step and use the classifier 
to detect character splits. This way you split the word in 
characters and you can get images that contain complete 
characters.  
Then you move on to the next step, which is to detect what 
character is in the image.  

 
Diagnostics of ML pipelines 

Ceiling analysis  

 

Initially you measure the overall system accuracy. But 
you want to identify which of the subsystems is more 
important for the overall accuracy.  
All subsystems have an error rate. So, the text detection 
might detect areas without text, or skip areas with text. 
Character segmentation will not work properly in these 
cases. So the text detection affects the error rate of the 
character segmentation. To disentangle the error rates 
we apply the ceiling analysis.  
 

We manually fix all the errors produced by the text detection system, so all of its prediction are correct. It now has zero error 
rate. Then we measure the overall accuracy. It has been increased by a certain magnitude. This is the contribution of the text 
detection to the overall system accuracy.  
Then we do the same with the character segmentation and remeasure the overall rate.  



This way we see the contributions of each subsystem and we can detect the most important one, so that we can focus our efforts 
on it 
 
Data augmentation  
Distortions (generated data in general) should be representation of the type of noise/distortions in the test set 

 

 

 

Get digits from different fonts and paste them in front of 
different backgrounds, apply some blurring, rotation etc. 

 
 
 
 

Practical 
Diagnostics  
Evaluating learning algorithms 

 

There are methods that you can use to determine 
which of these steps isn’t the source of the problem 
so that you don’t lose valuable resources trying to 
improve it, for example there might be no need to 
collect more data. The problem might be 
somewhere else.  

 
Generalization error and model selection 
(Training set, test set and cross validation set) 
We always must choose some model parameters, for example for linear regression the degree of polynomial d or the 
regularization constant λ. The performance of a hypothesis is measured with the generalization error which shoes how well the 
hypothesis function generalizes in new examples. 
 
A way to select these parameters is with a DOE study. Train 10 hypothesis of different degree and check the error on the cross 
validation set. Pick the one with the smallest error. Notice though that the cv error is not the real generalization error of this 
hypothesis. The real generalization error is the error on a different set, the test set. For this reason, you need 3 sets.  
 



 

 

 
 
 

In order to evaluate a hypothesis, to get the generalization error 
it is best to split our data to three sets not just two. A training set, 
a cross validation set (CV) and a test set with proportions of 
60/20/20. (or 70/30 if no cv set) 
 
If we only used a test set 
we try 10 different degrees of polynomial. We measure the test 
set cost for each one and pick the one with the smallest cost. But 
notice that this test set cost isn’t the generalization cost. Since we 
picked the hypothesis based on the costs on the test set, we can 
say that the hyperparameter d has been fit to the test set.  
 
Actually, we call cross validation set the one that we use to 
evaluate the cost for each hypothesis, and test set the one we use 
to evaluate the generalization error 
 
Notice that the formula for cv and test errors do not contain the 
regularization term. They just measure how well the hypothesis 
fits to the data.  
 
For classification there is an alternative test set metric that might 
be easier to interpret, the misclassification error. It is 1 if there is 
an error and 0 if there isn’t. if all test examples are wrong (1) then 
the misclassification error is 1. If none is wrong then it is 0.  

 

 
High bias or high variance problem  
Or in other words underfitting or overfitting.  

 

One method that you can use in order to identify if your 
model suffers from overfitting or underfitting is to plot the 
training set error and the cross validation set error versus 
the hyperparameter of interest (d for linear regression) in 
the same plot. 
 
As d increases the hypothesis can better fit to the data so the 
training error would decrease. The CV error would be large 
initially for small values of d since the hypothesis isn’t 
flexible enough to fit well to the data it would decrease as d 
increases but from a point on would start increase again 
since if we have a very flexible hypothesis it would overfit 
which means that the cost in the CV set would be large. 
 
Large values for both means bias problem.  
Large for CV but small for training set means great variance 
problem.  

 



 

In order to select a good value for the regularization 
constant λ, you can use a similar plot of the training and CV 
costs over the regularization constant λ. 
 
Notice that we use the regularized cost function to train the 
model, but we use the unregularized cost function for the 
plot so that we can compare it with the CV cost which is 
unregularized too.  

 

Learning curves 
Now we plot the training and CV error with respect to the training examples. The training examples is a fixed number for a given 
problem but for the sake of plotting these curves we evaluate the costs for smaller numbers of training examples in order to see 
the effect of the training data size and gain insights about the bias or variance of our model. 

 

Characteristic of high bias situation is that both the 
training and the CV errors are high and also similar to each 
other.  
 
In high bias cases more data don’t help. In these cases you 
might try to add more features or additional hidden units 
and recreating a learning curve. Now more data might 
help.  

 

The characteristic of high variance is that training error is 
small and CV error is large. There is a big gap between 
them.  
 
In high variance situations more data might help (the 
curves would eventually converge to a lower value) 

As I understand it if the training error and the cross validation error are at the same level and this level is low then our hypothesis 
has learned well from the data and generalizes well too. 
 
In conclusion 

 

 

 



Machine learning system design 
How to start working on a problem 

 

Error analysis 
The process of manually examining the errors that the 
model does on the cross validation set, to get some 
insights on what you need to do to improve it.  
 
You can use a numerical evaluation for example the CV 
cost for testing various alterations and tuning. 

 
For example, deciding what to do for building a spam classifier. 

 

 
 

 

Error analysis 

 
Choose to tackle the most important error cases 

Stemming is a technique used to consider similar words 
as the same one. 

 
 

 

F1 Score 
Skewed classes and Precision/Recall 

 

Skewed classes 
The case in which we have much more examples from 
one class than from the other class. In these cases the 
cross validation error would not be a good metric for 
the performance of the model. If the CV error in a 
binary classification problem is 1% you might think it 
is good, but if only 0.5% of the training and cv sets is of 
one class, you could have an algorithm that just 
predicts 0 all the time and does better than your 1% 
error model.  
In cases like these we need other metrics 
 



 

Precision = Positive Predictive Value = TP/ (TP + FP)  
Recall = Sensitivity = TP / (TP + FN) 
 
In the above example the algorithm that predicts 
always 0, would have a recall of 0, so we would know 
that it hasn’t learned from the data even though it has 
a 0.5% error. 

 

Every classification algorithm exhibits a tradeoff 
between precision and recall. If you want to increase 
precision you have to reduce the false positives, which 
means that you will make your model harder to output 
a positive. This would mean though, that it would be 
easier to predict negative which will increase the false 
negatives.  
 
If you want to predict 1 only if you are confident 
enough, then you might choose to predict 1 only if 
h(x)>0.7 for example instead of >0.5. Such a threshold 
would give a high precision but a low recall.  
 
There is a single metric that is used in order to evaluate 
algorithms based on their precision and recall values. 
It is the F1 score.  

 

F1 score 
It short of gives a greater weight to the low value either 
this is recall or precision. If one of them is close to 0 
then it would be close to 0 too.  
 
In practice you can try a range of different threshold 
values and evaluate their F1 score on the CV set to pick 
the one you want.  

The reason for which the F1 score is important in problems with skewed classes, is that in these cases it is difficult to grade the 
model based on the error rate. If the classes are not skewed and you have let’s say a 50/50 case, then if the error rate on the test 
set is 1% you know the algorithm is good. Because if it always predicted 1 or 0 the error rate would be 50%. But if the classes 
are skewed like in the cancer case, then you must use the F1 score.  
 
Common approach for structuring a good prediction model 
In general, a way to think of structuring a good prediction model is first to ensure that the input features have sufficient 
information to predict the output accurately. A way to evaluate that is to show the features to a human expert on the field and 
ask them if they can confidently predict the output based on these features. Then you must think about the bias and variance of 
the model. First you must ensure that you have a low bias model by choosing one with many parameters and then ensure that 
this model will have a low variance too, by collecting a huge amount of data, so that the model would not be able to overfit.  
(We already saw in which cases we might need additional data, so this is just a clarification) 



 

This research paper from Banko and 
Brill (2001) was very influential 
(although these algorithms are not 
currently used that much). Usually 
more data means better 
performance. But this is true only in 
some cases as we already saw. It is 
true when  
1. The features have sufficient 

information for the output 

2. The model has low bias 

3. Then there is a meaning in trying 

in having a lot of data 

 

Ceiling analysis 
Ceiling analysis 
 

Variance between predictions in regression 

 

 

Each red line is a NN with different parameters. The 
green line is the variance of these different NNs 
with each other, the variance between multiple 
predictions essentially. The smaller the variance 
the closer you are to the training cloud (the 
training manifold). This is an important take away 
that can tell you how well you do. Because it is not 
that easy to know how well your regressor does. So 
you train multiple of them, and you check the 
variance between them. If it is small, or smaller 
than some other models then you might be good.  
 
Notice that when using ReLU the out of data domain 
prediction is linear while if you use tanh or sigmoid 
it is not linear. I think you  just extend the last part 
of the linear piecewise function in one case and the 
sigmoid like one in the other.  

 
 

Regularization  

Intro  

 

For an intuition of how regularization helps to address 
overfitting, we can think of a 2d hypothesis where we 
penalize θ3 and θ4, forcing them to have low values. This 
means that their contribution to the hypothesis function 
becomes small, leaving only θ0 and θ1 as important  and this 
results to a curve that looks like a quadratic one with a few 
disturbances that fits well to the data.  
 
We enforce parameters to become small by adding a big 
scalar for these in the cost function. So in order to minimize 
the cost function these parameters must be really small. (I 
guess we use the squared parameters so that the sign of the 
parameter makes no difference) 



 

 
 

 

 
It can be shown that if you use small values for the 
parameters Θ of the hypothesis function, has the effect of 
producing smoother (simpler) hypothesis functions. A way 
to think of it is that by making all parameters small, if we 
have scaled feature values between 0 and 1, then the lower 
order parameters would be more important. If we have 
h(x)=θ0+θ1x+θ2x2+... if x is 0.1 then x2 is 0.01 which results 
in small contribution for θ2 to h(x).  
 
We regularize by adding an additional term in the cost 
function. The constant λ is called the regularization 
parameter and controls the magnitude of the parameters. 
Usually we don’t regularize θ0.  
 
Ultimately if all parameters become extremely small then 
the hypothesis function would be equal to θ0 which is a 
constant value that we usually don’t regularize. So if we end 
up with a constant h(x) it is an indication that the 
parameters are too small and we have to choose them to be 
a little larger. 

Essentially you minimize a function of that form. By controlling the magnitude of constant λ you control which of these 
two terms you think is more important. Λ actually controls the variance of your hypothesis. You select a tradeoff between how  
well you want your hypothesis to fit to the training data (A term more important than B) or how small you want the hypothesis 
parameters to be so that the hypothesis is not that flexible (B larger than A).  
 
Some intuitions 

 

 

This might be an intuition on why smaller weights 
mean smoother functions and consequently less 
overfitting chances.  
By decreasing the magnitude of the coefficients 
(regularizing) you decrease the size of the space 
that the hypothesis function defines. Thus the 
hypothesis function can’t overfit to data outside of 
that space. 
If your hypothesis can do everything from being a 
straight line to wiggling in every direction like a 
sine wave that can also go up and down, it's much 
more likely to pick up and model random 
perturbations in your data that isn't a result of the 
underlying signal but the result of just lucky chance 
in that data set 
 
For given data within let’s say -2 to 2 range, the 
small coefficient function has less variance while 
the large coefficient ones, can take larger values so 
they can overfit if there was data points with large 
values.  

 
 
Regularized linear regression  



 

 

The partial derivative for the regularized cost 
function of a linear regression problem is given by 
the formula inside the pink brackets.  
 
Doing algebra we end up with a more compact form 
which is actually the same as the standard linear 
regression with the difference that Θj is multiplied 
by a constant (1-αλ/m) which is usually smaller than 
1 since α is small and m is large. So during 
regularized gradient descent parameters θ become 
smaller faster.  
 
For the normal equation method the new form is as 
shown. Notice that with regularization you avoid the 
non invertibility problem too. It can be shown that in 
the regularized form since λ>0 the matrix is always 
invertible.  

 
 
Regularized logistic regression 

 

 

The formula for partial derivative of the cost function 

 
Norms  
L0 norm 
The number of components of a vector that are non zero  
 
L1 norm 
The sum of the absolute values of the components of the vector. In context of DL minimizing L1 norm of a vector is called sparse 
coding, it makes the vector more sparse. It is a convex function so you can run gradient based optimization. It is differentiable.  
Minimizing L1 norm implicitly minimizes L0 norm (which is a non convex problem).  
 
L2 norm 
Sum of the squares of vector components, and the get the square root of this.  
 



In Practice 
All these are regularization techniques, which means they make the weights small.  
 
Data normalization or Data Standardization  
In the data preprocessing step, we normalize or standardize the data. Both operations have the target of putting all features on 
the same scale. If the input data has four features [x1 x2 x3 x4] then these all x1s and all x2s etc. will lie within the same range.   

 

Normalized data lie between 0 and 1 
Standardized data have mean=0 and std=1 (do if xi follows a 
normal distribution all xis will lie roughly between -1.5 and 
+1.5 (within 3 stds) 

 
 
Weight decay  
Usually L2 norm of the weight matrix 

 

Defined in the 
optimizer setup 

 
Dropout 
Only active during training mode (net.train() in pytorch). At each pass there is a probability for neurons to be dropped out (not 
existing). So the network has to learn more robustly (I guess it forces the model to have some redundancy on neurons, so a 
feature might be represented by more than one neurons so when one is shut off the other representing that feature might be 
on??? and they learn to represent only the most important features ) 
At training a neuron has probability p of dropout. 
At testing we multiply weights outgoing from the hidden neurons by 1-p.  
So if it had a probability of 70% being off during training (so it was shut off 70% of the time), then it contributes for 30% of its 
value on test.  

 

You select to which layer the Dropout is applied.  

 
Have in mind that if you use dropout of 20% then in order to keep the norm of the vector constant despite the 20% reduction of 
components, you need to increase the magnitude of the other components by 1/(1-0.2)=1.25 
 
Batch normalization 
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739 good explanation and practical tips 
https://blog.janestreet.com/l2-regularization-and-batch-norm/ batch norm vs weight decay 
 
normalize  
 
scale and shift  
Unlike the input layer, which requires all normalized values to have zero mean and unit variance, Batch Norm allows its values 
to be shifted (to a different mean) and scaled (to a different variance). It does this by multiplying the normalized values by a 
factor, gamma, and adding to it a factor, beta. Note that this is an element-wise multiply, not a matrix multiply. 
 

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://blog.janestreet.com/l2-regularization-and-batch-norm/


What makes this innovation ingenious is that these factors are not hyperparameters (ie. constants provided by the model 
designer) but are trainable parameters that are learned by the network. In other words, each Batch Norm layer is able to 
optimally find the best factors for itself, and can thus shift and scale the normalized values to get the best predictions. 
 
Moving average of means and std 
In addition, Batch Norm also keeps a running count of the Exponential Moving Average (EMA) of the mean and variance. During 
training, it simply calculates this EMA but does not do anything with it. At the end of training, it simply saves this value as part 
of the layer’s state, for use during the Inference phase. 
In inference we have only one sample. So to normalize it we use the EMA mean and std stored in the model.  
 
 

 

This is what batch norm does. These 4 parameters are all learnable during 
training. Operations 2 and 3 set a new std and mean for the data. This happens 
per batch. So in a layer with 4 neurons (4 hidden features x1, x2, x3, x4) and batch 
size of 256, we normalize x1 using its 256 values (calculating its mean and std). 
same for the other features.  
 
This process makes the weights not become imbalanced, some being vary large 
and some very small.  
Increases training speed.  
 
Batch norm Vs weight decay 
When used together with batch normalization in a convolutional neural net with 
typical architectures, an L2 objective penalty no longer has its original 
regularizing effect. Instead it becomes essentially equivalent to an adaptive 
adjustment of the learning rate! 
 
So you either use one or the other I guess 

 
 

 

In pytorch you define where you want the batch 
norm to take place. After which layers.  

 
 
 
 

Tips  
 
We use Keras callbacks to implement: 

• Learning rate decay if the validation loss does not improve for 5 continues epochs. 

• Early stopping if the validation loss does not improve for 10 continues epochs. 

• Save the weights only if there is improvement in validation loss. 

 



 

Many of the tricks used in DL in this paragraph.  

 
• If you change the batch size you need to find a different set of hyperparameters for your model too. 

• A higher batch size often has a similar effect to lowering learning rate. 

• After some epochs the cost starts increasing and you have to decrease the learning rate to overcome this region. 

• Dropout? 

• Batch normalization? 

• Example of different data distribution between the evaluation and the training set: images in evaluation set were all unique, 

while training set could contain same images (but with different captions). I added more training data along the way to 

overcome this and make the error rate decrease further. 

• Then @_arohan_who had been suggesting great ideas along the way mentioned that I should try to train in full precision, 

and update beta1 momentum (to overcome the cost plateau) 

 
Tricks for efficient backpropagation 

 
 
L1 and L2 regularization. We add a term to the cost with the effect 
of making the weights smaller at every iteration.  
 
Dropout 
In pytorch dropout is implemented as a layer. It is applied to the 
output of a layer, and it randomly makes some of its activations 0. 
This forces the network to not distribute the information of some 

Weight initialization 
The concept is that the weights are initialized randomly 
in a way that if a unit has many inputs the weights are 
smaller than if it had few inputs. Usually the inputs are 
normalized (0 mean unit variance). So the weighted sum 
increases by the sqrt(number of input units). We want 
the weighted sum to be fairly the same size both when 
there are many and few inputs and we want it to be fairly 
in the same size with each inputs (0 mean unit variance). 
So the weights become smaller by a factor of 
1/sqrt(nOfUnits).   
 
This is built into pytorch. There are a few options (He, 
Xavier, LeCun) but they are all based to the same 
concept. 

• He initialization works better for layers with 

ReLu activation. 

• Xavier initialization works better for layers with 

sigmoid activation. 

 



patterns in many nodes and become more robust. It has been 
shown that dropout can decrease the generalization error in many 
cases. But it might not be always necessary.  

There are many variations of SGD. the learning rate can 
be a scalar, or a diagonal matrix, or a full matrix. It can be 
constant, or usually it is decreased according to a 
schedule (pytorch has many built in schedules). ADAMS 
is a kind of SVG where the learning rate is a diagonal 
matrix the elements of which change in every step. In the 
optim package of pytorch there are a lot of them to 
choose from. 
 

 
Datasets 

 

 

 
CRISP DM 
CRoss Industry Standard Process for Data Mining (CRISP-DM) 

 

The CRoss Industry Standard Process for Data Mining 
(CRISP-DM) is a process model that serves as the base for a 
data science process. It has six sequential phases: 
 
1. Business understanding – What does the business 

need? 

2. Data understanding – What data do we have / need? Is 

it clean? 

3. Data preparation – How do we organize the data for 

modeling? 

4. Modeling – What modeling techniques should we 

apply? 

5. Evaluation – Which model best meets the business 

objectives? 

6. Deployment – How do stakeholders access the results? 

7. Published in 1999 to standardize data mining 

processes across industries, it has since become the 

most common methodology for data mining, analytics, 

and data science projects. 

 
Data science teams that combine a loose implementation of 
CRISP-DM with overarching team-based agile project 
management approaches will likely see the best results. 

 
Active learning  
 
Learning rate schedule 
You choose one schedule like cosine annealing. 
 
Pseudo labeling 
 
Test-time augmentation 
 
 
Model size, batch size and GPU  



Could not go with deeper model than ResNet-34 because it wouldn’t fir on a single GPU with the large batch size input 
 
Some Methods overview 

 

Evaluating 5 different 
methods or models.  

 
 
Saliency analysis 

  
 
Confusion matrix 

 

 



 
What we learned what we didn’t  

 

Visualization of feature 
maps 

 

 

 

Industry tips  

 

 

 
Airbnb  



 

 

 
 
Tesla  

 

 
~1000px*1000px images running on ResNet-50 like models 
(2019) 

 
HydraNets (shared backbone multiple heads) 
They can’t afford to have a NN for each individual task because the number of tasks are too many (~100) so they have to amortize 
some of the computation and put some of the tasks on shared backbones. They call these networks hydra nets (shared backbone 
with multiple heads) 



 

DeepLabVV3 is a model architecture for semantic 
segmentation 
 
UNet is a model architecture for semantic 
segmentation  
 
FPN is a model architecture for object detection 

 
There are single view tasks and across camera tasks. In the former the NN has to predict from a single image. In the later it  has 
to process the scene from multiple cameras (for example estimating depth). Depth of each individual pixel. You have to borrow 
features from other hydra nets. So you have one hydra net for each camera. If you need more than one camera inputs for a 
specific task, you have to combine the output features of multiple hydra nets and add an additional layer of processing on top of 
them (optionally recurrent) 
 
Across camera tasks 

 

Predict the depth 
(depth network) 

 

Predict the road layout  
(layout network) 
The input is from 3 cameras (out of the 8 a tesla car 
has). From these 3 they predict the road layout. Now 
the networks predictions are not in image space but 
in top down space. So the stitching up of the 3 
cameras happens inside of this RNN (while the pave 
ways edges where stitched up from individual 
images predictions “manually” in c++ code) 

 
RNNs on videos 

  
 
Deep Understanding Tesla FSD (5 parts) 
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57  
 
Code  

https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57


 

Hugginface  

 
 
 

Benchmarks  
BIG-bench and BIG-bench Lite (2021) 
The Beyond the Imitation Game Benchmark (BIG-bench) is a collaborative benchmark intended to probe large language models 
and extrapolate their future capabilities. The more than 200 tasks included in BIG-bench are summarized by keyword here, and 
by task name here 
BIG-bench Lite (BBL) is a small subset of 24 diverse JSON tasks from BIG-bench. It is designed to provide a canonical measure 
of model performance, while being far cheaper to evaluate than the full set of more than 200 programmatic and JSON tasks in 
BIG-bench. 
https://github.com/google/BIG-bench  
 
 
Vision 
ImageNet 
 
Speech 
LibriSpeech 
 
Text (NLP) 
GLUE benchmark suite  
 
 

https://github.com/google/BIG-bench
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