
Machine Learning

https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN Andrew NG course

Supervised learning
⚫ Regression problem: predict continuous valued output

⚫ Classification problem: predict discrete valued output

Unsupervised learning
⚫ Clustering problem: Here is the data, can you find some structure on them. A clustering algorithm can cluster the data in

different clusters.

---> Supervised Learning <---

Linear Regression

Univariate linear regression
Univariate (one variable) linear regression. For example find a linear function that maps the footage of houses (x) to their price
(y). The official terminology for the function is “h” from hypothesis. m is the number of training examples. Hθ(x)=θ0+θ1*x. θ0
and θ1 are the parameters of the model. The formalization of this problem is to Minimize over θ0 and Θ1 the sum of squared
differences between predictions and real values [We multiply the sum by 1/2m, minimizing the (half of) average error in order
to simplify the math along the way]. minimize over θ0 and θ1 means find the value Θ0 and θ1 that minimize this expression
which is a function of θ0 and θ1. this expression J is called the cost function which is the objective function we want to minimize.

Contour plots: represent a 3d graph in a 2d graph
where continuous lines have the same value for the
3rd coordinate.

linear regression’s cost function is always a convex function which means that it doesn’t have local optima but only one global
optimum.
m: number of data points (training examples)
n: number of parameters of the hypothesis function (number of features) that we want to fit to the data

Gradient descent
So how you minimize the cost function? One way is using the gradient descent algorithm

In order to find the hypothesis that best fits the data, we need to find the hypothesis parameters that minimize the cost function.
Gradient descent is one method that can be used to minimize a function, a function of the form J(θ0, θ1, ... , θn).

Each point of the surface corresponds to a specific hypothesis function, which has its own cost
value. You begin by selecting a random point in the surface. You consider one parameter as
constant which means that you get a slice of the surface, which gives you a 2d function of the
remaining variable. You want to move on that surface to the direction that makes the y value
(the cost) smaller. The easiest way to do this is to calculate the derivative in the point in which
you currently are. The derivative can be calculated by the data and the current hypothesis
predictions.

If the derivative is negative you have to move to the direction that increases the variable (and decreases the cost). Then you do
the same for the other variable. The two movements, one in each direction gives you your total move and your new position on

https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN

the surface. When you reach to a minimum the derivatives there would be zero so the algorithm will converge, meaning that the
new values for the variables would be equal to the previous ones.

The parameters of the cost function (θ0 and θ1 here) must be
updated simultaneously meaning that we first find the new θ0 and
then we find the new θ1 using the old θ0. Then we update θ0 and
θ1 to get the new values. These describe a new hypothesis function,
with a new cost value which is depicted as a point in the cost
function surface. Then we repeat. As we approach a local minimum
gradient descent will automatically take smaller steps since the
derivative starts to approach 0 so it becomes smaller and smaller.
So there is no need to decrease the learning rate (α) over time.
You can calculate the formulas for the derivative terms and then
use them to run gradient descent.

Notice that if you try to minimize a random function that has many local optima, then gradient descent would converge to
one of those local optima without searching for the global optimum. But what is important with linear regression is that
its cost function is always a convex function which means that it doesn’t have local optima but only one global optimum .

Batch vs stochastic gradient descent
In a linear regression problem, at each step of gradient descent the gradient descent algorithm uses all the training examples. It
calculates the next values for its parameters by minimizing the average cost (the squared distance from all training examples).
This is called Batch gradient descent.
I guess that in stochastic gradient descent you randomly select some training examples at each step, so you actually create a new
cost function (a new surface) at each step which is an approximation of the real one and minimize there. As I saw most real
world cases use stochastic gradient descent because it converges faster.

The normal equation method
Have in mind that in linear regression you can analytically calculate the minimum of the cost function without using an iterative
process like gradient descent. That method is called the normal equation method. It has pros and cons, one advantage is that
you don’t need to care about setting a proper learning rate since it doesn’t use such a thing. But it turns out that gradient descent
scales much better for large datasets.

Vectorization
The partial derivatives of the cost function with respect to the parameters of the hypothesis are calculated in each time step and
they include the calculation of the hypothesis for all the training data. We can just iteratively evaluate for each data point or we
can reform the problem in a way that it can be calculated more efficiently.

You just must create a Data matrix by adding a first column
of ones. The vectorized solution is much faster and more
compact. Prediction = Data Matrix * Parameters Vector

Also, if you have more than one competing hypothesis and
you want to calculate the price predictions for each one of
them, you can vectorize it using matrix to matrix
multiplication.

Have in mind that Matrix multiplication is associative
(A*B)*C=A*(B*C) but not commutative A*B != B*A

Multivariate Linear regression
(with multiple variables)
The variables are also called features.

Notations

Now the hypothesis function that best fits to the data
describes a multidimensional object (in case of two
variables a two d linear surface).

In order to express the hypothesis formulation in a
vectorized form, we define an additional feature (feature
zero x0) that has value of one. Using it we can write the
hypothesis function as dot product of two vectors, the
transpose of the parameters vector and the features vector.
 hθ(x) = ΘΤx

Minimizing the cost function in multivariate linear regression with Gradient descent

The partial derivative of the cost function with respect to
any parameter of the cost function has a common formula.

So in multivariate gradient descent we just update more
parameters in each step, not just two as in linear regression
of one variable.

Have in mind that the gradient of a function gives you the direction of steepest ascend. So, to decrease it you move to the opposite
direction. The length of that vector gives an indication of how steep that curve is.

Gradient descent

Gradient descent tricks
Feature scaling
If the scale of the variables/features are similar (the range of values is similar) then gradient descent converges faster.

If the scale is not similar, for example x1 (0-2000) and x2 (1-5) then if
you select a good θ1 then θ2 has little effect on the cost. You can have a
bad θ2 and still have a low total cost (since θ1 is far more important).
On the other hand a small change in θ1 would have a big impact on the
cost.

This situation causes slow convergence to gradient descent. This happens since initially you get a big step towards the correct
θ1 since the gradient of the cost function is big in the θ1 direction and within a couple of steps you have reached the minimum
in the θ1 dimension. Then you must move along the θ2 direction which has a very small gradient (the slope in the vertical
direction is very small) so the steps would be too small and since you have one learning coefficient you can’t increase it since
this would cause a big step in the θ1 direction which would increase the cost.
Maybe we can use two different learning coefficients one for each parameter? The common approach is to scale the data
appropriately so that the cost contours are uniform.

Feature Scaling
The trick is to make them approximately to -1 to 1 range.
This can be done by dividing each value of a feature with its
range.

You can also apply mean normalization to them, subtracting
from each value of a feature its average value and divide
with the range (or the standard deviation)

These two steps define the general rule x=x-μ/s where s
could be the standard deviation of the feature or its range.

Feature choosing
With Choosing/designing features you can achieve:
⚫ Feature dimensionality reduction

⚫ Polynomial regression (fitting more complex shapes to your data, not just simple straight lines)

Dimensionality reduction

If you have some insights about the problem you are studying, then you can
use them to combine existing dependent features into a new one. This way
you reduce the dimensions of the problem which makes it simpler to solve.

Polynomial regression
You can solve polynomial regression problems using linear regression mechanics, by appropriately redesigning the features.

There are cases in which a polynomial function would be a better
fit to the data than a linear function. For example assume you have
a one variable problem (the size of the house). Assume that you
know the size and the price of houses form a chart like this. In this
case a cubic polynomial would fit well to the data. A quadratic
polynomial would fit well to some values but it comes back down
again for large values of x so we don’t want it. A cubic function
would be better.

The trick to use linear regression mechanics to solve polynomial
regression problem is to redesign the features (feature choosing).
in this case we can create two new features where the second and
third are the size of the house squared and cubed respectively. But
what is also important now, is to do a proper feature scaling. Then
we can solve a linear regression problem to identify the correct
parameters of the polynomial.

Notice that if you just see the hypothesis function you would
assume that it describes a 3 features problem, for which each
feature affects linearly the price, but in reality it is a one
feature problem (the size of the house) that affects cubically
the price.

Notice that you could also use another polynomial with a square
root. Depending on your insights about the data you can design the
features appropriately.

Momentum
(from another source) the model keeps traces of the past gradient directions and doesn’t recompute the gradient in each step
but uses a previous gradient. It does this for some iterations. This way it might converge faster.

Convergence

The best way to understand if gradient descent has converged is to make a plot of the cost function relative to the number of
iterations. When the plot starts to become parallel to the x axis gradient we can say that gradient descent has converged. Another
way is to use automatic convergence which means to set a threshold ε and if the cost decreases by less than ε in one iteration
then accept convergence. But it is not very easy to select the proper ε. 10-3 might be enough for one application but not for
another,

The cost must decrease in every iteration of gradient descent. If instead it
increases you should probably decrease α.

Practically you should try different α values to see how they behave. Testing a
range for example 0.001 to 1 by increasing α by a factor of 3 each time. Select
the biggest possible that converges.

Normal equation method
Linear regression problems can be solved analytically too, using the normal equation method. You have a multivariate linear
regression problem. You add the zero feature. You have a cost function. You can find the extreme values of a function by equating
its derivative with 0. This is the main idea.

You have to equate with 0, all the partial derivatives of the cost
function and then solve a system of equations for the value of the
parameters. These values are the values that eliminate the partial
derivatives and minimize the function (which is convex so we
know that it has a global minimum). This would lead to a function

that you have to solve:

X is called the design matrix and its rows are the transposed
feature vectors. y is the training data vector.

So this means that you have to compute the XTX matrix and then
invert it. This matrix would be a n by n matrix and the inverting
operation has an efficiency of O(n3). this means that if the number
of features is very big this operation would be very expensive
which would make gradient descent far more efficient.

Have in mind that some rare cases XTX might be non-invertible.
If a matrix has rows or columns linearly dependent then the
matrix is not invertible, (matrix determinant = 0). Some reasons
for that could be 1. that some features are linearly dependent or
2. there are too many features (m<n). Notice that there are
libraries that can handle non-invertibility and still solve the
problem (pseudo-invertibility)

Notice that you don’t need to perform feature scaling for the
normal equation method.

Batch, Mini batch and Stochastic gradient descent
When you have a huge number of training examples (m is huge) you must sum over all these examples to calculate the partial
derivative used in the gradient descent algorithm. You calculate which direction decreases the cost function for all examples. In
the version of stochastic gradient descent, you calculate the error based on only one example. In mini batch you calculate the
error based on b examples where usually 2<b<100. So you will make more gradient descent steps to reach to an acceptable
solution but each step will be much faster. The steps will not go directly to the direction of biggest decrease, but they will wonder
around the cost function somewhat randomly. Stochastic and mini batch gradient descent doesn’t find the global optimum, but
it oscillates around it.

Minibatch might be more efficient than stochastic gradient descent if
you have a good library for vectorized calculations. The disadvantage
is that you have an additional hyperparameter, the batch size, to
tune.

Checking for convergence

Stochastic and mini batch gradient descent doesn’t
find the global optimum, but it oscillates around it.

To check convergence you plot the learning curve.
These are some cases. In the case where it is flat, the
algorithm doesn’t learn and you might try to find
other features or more data etc.
If it diverges use smaller learning rate a.

In most cases we are ok with the result of stochastic
gradient descent. But if we want a solution closer to
the optimum we can try to decrease a as the
iterations progress. Although this isn’t used often,
because we have two additional hyperparameters to
tune.

Misc
Minibatch

• The only reason to use minibatch vs stochastic is the parallelization.

• Its good to have in the minibatch samples that are different with each other.

• Minibatch size determined by the hardware you have. For large ANNs and a gpu let’s say 16-64

• If you increase the batch size too much (in a big cluster for example) you accelerate the calculation due to increased

parallelization but you decrease the speed of convergence. So there is a limit until which it has meaning to increase the

batch size.

• The size must not be larger than the number of classes

A tip on normalization

Notice that when you normalize the features you might not need to calculate the mean and deviation based on all dataset,
because these quantities converge quite fast.

Normalization on the weighted sum values
Apart from normalizing the features, it’s been shown that it is also important to normalize the internal state of the ANNs too, the
weighted sum values in other words. A technique to do this is called batch normalization. I guess that t1his is the reason why
you initialize weights with He and similar techniques. They try to achieve a weighted sum which is in the same range as its inputs
(zero mean and unit variance)

Logistic (sigmoid) Regression
For classification problems (the outputs are discrete values)

Linear regression is not good for classification problems. You might get lucky
and it might produce good predictions (using a threshold classifier output)
but just one outlier can make it worthless.

In logistic regression we want the prediction h(x) to be between
0 and 1. To achieve that we transform h(x) (passing through a
function g) in such a way that it would always produce values in
the desired range. Specifically we transform it to a logistic
(sigmoid) function.
In linear regression h(x)= θΤx while in logistic regression we pass
that through the sigmoid function. Now a training point xi
corresponds to a specific z value (z=θΤx) and this z value has a
g(z) output which is the prediction value between 0 and 1.

We interpret the output of the prediction function as a probability
of the specific input to give 1 as output. For example for a specific
x1 if h(x1)=0.7 it means that the feature (the characteristic) with
value x1 has 70% probability of being 1 (whatever 1 might mean,
for example cat).
The formal way of saying this is by saying that the prediction h(x)
gives the probability that y=1 given x parameterized by θ.

Have in mind these values. A value of 4.6 corresponds to a logistic
value of 0.99 and -4.6 to 0.01

As with linear regression we try to minimize the cost by
finding the proper parameter values θ.

For a given data point x, each different θ gives a different z
which gives a different g(z). By modifying θ you don’t affect
the logistic function which is always the same, being 0.5 for
z=0.

What we do is this. For each training point (x,y) if y=1 then
we say that the correct prediction for that x, is h(x) or g(z)
to be >= 0.5. But g(z) is >= 0.5 when z>=0 or θΤx>=0. This
means that for points of the data set that have y=1, θΤx must
be >=0.

Suppose that you have somehow calculated the correct
values for the parameters θ, in this example [-3 1 1]. The
function θΤx expands to -3+x1+x2. If we want to predict 1
for points x for which y=1, then as we said we want θΤx>0 -
> -3+x1+x2>0 -> x1+x2>3. This equation defines a line. If
a point x is on the right of that line then z or θΤx would be
greater than 0 and g(z) would be greater than 0.5 so the
prediction would be 1. This line is composed of all points x
for which the prediction is exactly 0.5 and is called the
decision boundary. The decision boundary is a property of
the prediction function (of its parameters) and not of the
training data (the parameters though are chosen based on
the training data). In linear regression we plot the
prediction function itself, while in logistic regression
we equate it to 0 which makes it a whole different
function (the decision boundary) and plot that.

As with polynomial regression we can add some polynomial
terms to the prediction function in order to achieve non-
linear decision boundaries.

If z has a large variance it takes values that span the non linear part of the g(z).

If we use the linear regression cost function due to the fact
that the h(x) is now a non linear function (the logistic
function), the squared cost function J(x) would be non-
convex. This means that gradient descent would not be
guaranteed to converge to the global minimum. So we have
to define a different cost function.

The new cost function is actually two functions.
This way if y=1 and the prediction h(x)=1 the function -
logh(x) gives 0 which means that the cost is 0 since the
prediction is correct. But if the prediction is 0 then the cost
is infinite.
The opposite applies to cases for which y=0.

We chose that specific cost function based on maximum
likelihood estimation. It also has the nice property that it is
convex.

 =

The cost function can be written in the following form too:

which is a more compact form. Notice that the first term is a
product of a quantity with y and the second term a product
of a quantity with 1-y. so if y=1 the second term becomes 0
and when y=0 the first term becomes 0.

It turns out that the partial derivative of this cost function is
of the same generic form with the one for linear regression

with the difference that now
xexh − 

+= 11)( . We can

also vectorize the calculations.

Have in mind that feature scaling is also needed for gradient
descent to converge efficiently in logistic regression too.

Other optimization algorithms

Apart from gradient descent there are other optimization
methods too, that usually converge much faster. In addition
you don’t have to explicitly define the learning rate since
they use a line search algorithm to automatically define a
learning rate which can be different for each step.
Similar to gradient descent these algorithms use the cost
function and its partial derivatives so you need to provide
these to them.
Their disadvantage is that they are more complex to
implement so you need to pick a library that uses a good
implementation.

Multiclass classification
One versus All method

One method for doing it is the One vs All method where we
train a logistic regression classifier for each class. Then
when we have a new data point and we want to classify it
we calculate the predictions from all classifiers and the one
that is more certain about the new input wins.

Overfitting

Intro
Overfitting means your model does much better on the training set than on the test set. It fits the training data too well and
generalizes bad. The main reason for overfitting is sparse data.

We say that the hypothesis has high variance or high bias.

High bias (underfit)
For example, if we use a line, the model has a preconception
that the price of houses depend linearly on the size despite
the data to the contrary

High variance (overfit)
If we use a high order polynomial then it has the possibility
to fit to a great variety of data sets, it is very flexible, the
space of possible hypothesis is too large, too variable and we
don’t have enough data to constrain it to give us a good
hypothesis

Why too many features cause overfitting
Adding more features expands the hypothesis space making the data more sparse and this might lead to overfitting problems.

Addressing overfitting
⚫ Plotting the hypothesis

When we have only one or two features it is very easy to plot the hypothesis function over the features (a 2d or 3d plot) and not
only guess what polynomial order we want to use for the hypothesis but also check at the end if the hypothesis is overfitting to
the data. If it does then we can choose a polynomial with lower order and try again. When we have many features though it
becomes difficult to visually understand what’s happening. In these cases we must use other techniques to address overfitting.
⚫ Reduce the number of features

One way to address overfitting is to reduce the number of features. We can either select manually which features to keep or use
a model selection algorithm that automatically selects which features to keep. The disadvantage is that all features might be
important so by omitting some, we lose valuable information.
⚫ Regularization

Reduce the magnitude of the parameters θ. works well if all features contribute a bit to predicting y so we can’t reduce the
number of features.

Neural networks
A Neural network is a classifying algorithm that is useful for the creation of non linear hypothesis (non linear function of the
input). For problems with many features it is a much more efficient classifier in relation to logistic regression.

The input to the classifier is the intensity values of the pixels of
the input image. It has to classify the input as car or non-car
based on them. So the number of input features is the number
of pixels.

Theoretically you could use polynomial logistic regression
but the problem is that the number of quadratic terms (x12,
x1x2, x1x3, … x1xn) in the hypothesis polynomial is O(n2/2)
and the number of cubic terms is O(n3). So for a problem
with n=100 features you end up with hundreds of
thousands of “designed” features (the high order terms) in
the hypothesis. This would result in overfitting and
performance problems and make it a non viable solution. So
we need an alternative.

A picture 50 by 50 pixels has 2500 pixels. If we use the
greyscale values for describing pixel intensity and use them
as features for a classification problem, then we have 2500
features which would lead in millions of designed features
in a polynomial hypothesis.
(the chart’s axis are pixel intensity values)

An alternative classification algorithm is an artificial neural network.

A neural network defines a function h that maps from an
input space x to a prediction space y. By varying the
parameters Θ (which are now called weights) we get a
different mapping, or in other words a different function or
hypothesis h.

Each neuron’s sum of weighted inputs, pass through a
logistic function g and the output of that is the neuron’s
output. This applies also to the output layer. So in this
setup neurons output (activation) is always between 0 and
1. The hypothesis is the activation of the only unit of the
output layer which is also between 0 and 1.

Notice that there is also an additional input x0 which is not
always shown in the graphs, that is called a bias unit and
has a value of 1 (x0=1, though its weights might change).
Why do we need it? see explanation below.

(a1(2) stands for “activation”, meaning the output value of
the first unit of the second layer)

This process of computing h(x) is called forward
propagation. We propagate the activation of the input
units (the input values) forward to the next layer’s hidden
units and so on.

The calculations for forward propagation can be
vectorized. Notice that we add also a bias unit to the hidden
layer whose value (activation) is 1. These activation values
will be weighted and similarly will produce the final output
(the activation of the output unit)

Neural network as logistic regression

If you have a neural network with no hidden units
then it works exactly as a logistic regression
algorithm. The hypothesis produced is g(z) where z=
θΤx.

If instead there is a hidden layer then the inputs to the
output unit are not the original features but some
other values, some other new complex features that
have been learned from the original ones with logistic
regression. Each hidden unit represents a new
complex feature. This mechanism allows the ANN to
be able to form very complex non linear hypothesis to
fit to the input data.

The units of the last layer of a ANN (as any other unit
of an ANN) are doing logistic regression on their
inputs.

XNOR: Sometimes referred to as an "Equivalence Gate," the gate's
output requires both inputs to be the same to produce a high output.

Implementing some logical functions with ANNs. The
XNOR implementation requires a hidden layer which

is composed of two units each of which calculates a
slightly more complex function of the inputs, namely
AND and (NOT x1)AND(NOT x2). Then these more
complex inputs are used to implement an even more
complex output. This gradual complexity is the
reason why ANNs could form really complex non
linear hypothesis (and thus decision boundaries).

For multi class classification we use a method similar
to the One vs All in logistic regression. We have one
output unit for each class. This time the output is a
vector.

Why we need a bias
A simple way to understand what the bias is: it is somehow similar to the constant b of a linear function y = ax + b. It allows you
to move the line up and down to fit the prediction with the data better. Without b the line always goes through the origin (0, 0)
and you may get a poorer fit.

Consider this 1-input, 1-output network that has no bias

In effect, a bias value allows you to shift the activation
function to the left or right, which may be critical for
successful learning.

Changing the weight w0 essentially changes the
"steepness" of the sigmoid. That's useful, but what if
you wanted the network to output 0 when x is 2? Just
changing the steepness of the sigmoid won't really
work -- you want to be able to shift the entire curve to
the right.

That's exactly what the bias allows you to do. If we
add a bias to that network, like so:

Having a weight of -5 for w1 shifts the curve to the
right, which allows us to have a network that outputs
0 when x is 2.

How it works: The bias (multiplied by its weight) is
added to the weighted sum before it passes through
the sigmoid function. If it is -10, then for the specific
feature to be recognized (the sigmoid to be > 0.5) the

sum without the bias should be > 10 instead of simply
greater than 0. So the sigmoid has been shifted to the
right. This kind of makes this specific feature to
need a large degree of certainty in the input, for it
to be activated. Another way to think of the bias is
a number that makes the specific neuron to tend
to be active or inactive.

Cost function
The cost function is a generic form of the logistic regression cost function. The first term sums the cost of each output unit for
each training data point. The regularization term just scales all the weights of the network except from the bias units since we
don’t want them to become 0. The reason that we added them in the first place was to contribute some non zero input to each
layer.

L: is the number of layers
sl: is the number of units (not counting the
bias unit) in layer l.
k: is the number of output units

Support Vector Machines

SVM for linear boundaries
SVM for linear boundaries is a large margin classifier

It is an other classification algorithm that offers some computational advantages and an
easier optimization problem in relation to logistic regression. It can model both linear and
non linear decision boundaries.
In case of linear boundaries the characteristic of SVM is that it produces a large margin
boundary. In both cases there are mathematical tricks that formulate the problem in such
a way that it is computationally efficient. The first one is the linear cost function. Another
one for the linear case is the large value of C which gives the large margin.
For the non linear case we use the kernel method and a trick is the transformation of the
regularization term of the cost function. In all cases the SVM optimization is a convex
optimization problem (the cost function is convex) so a global minimum will always be
found (as opposed to using a neural network)

The pink lines are the SVM cost functions
relative to z. They are a linear approximation
of the logistic regression cost functions. This
is what makes SVM more computationally
efficient.

The cost function is transformed to CA+B
instead of the A+λB of the logistic regression
where C=1/λ (it doesn’t mean that if C=1/λ
then the two expressions are equal. It means
that the optimization of the two expressions
will give the same optimum values)

An other difference is that it produces 1 or 0.
not like logistic regression which can give
probability (for example 0.8)

The reason why SVM is a large margin classifier

When C is very large (let’s say 100000) which means
that λ is very small so that regularization is small (and
variance is large), the SVM model has an interesting
property. It tries to separate the positive and negative
examples with as big of a margin as possible.

The big margin is a consequence of the minimization
problem the objective function of which contains only
the B term for large values of C.

A large margin classifier is sensitive to outliers (because
it has large variance so it has space for “overfitting”). The
larger you choose the C to be, the more sensitive SVM
will be to outliers and will produce the purple line
instead of the black one, in a case like this.
If the C is a bit smaller (but still large so that you get this
large margin effect) SVM can handle outliers like in the
example, or can even be used for cases that are not 100%
linearly separable but have some outliers within the
opposite region.

Here is the mathematical explanation of the reason for
which the minimization problem leads to a large margin
decision boundary when C is very large.

We transform the objective and constraints expressing
them as vector norms and dot products. θΤx is a dot product
between the two vectors, which can be represented as the
multiplication between the projection of x to θ and the norm
of θ.

(θ0=0 means that the decision boundary passes through the
origin)

It can be proven that the vector θ is orthogonal to the
decision boundary. Knowing that, we can measure the
projections of vectors x to θ and conclude that a decision
boundary with big margin gives larger projections in
relation to one with small margin.
If the projections are small, then the norm (magnitude) of θ
should be large so that p*θ>1. But the objective is to
minimize norm of θ. So the SVM optimization will not
produce such a solution. Instead it will produce a solution
where the projection to the θ are large so that θ can take
small values.

SVM for non linear boundaries

We use the kernels method. We select some specific points in the
feature space which are called landmarks denoted by l, and the
hypothesis learns to predict 1 for input points close to some of them
and 0 for input points close to the rest of them. The result is the
formation of highly non linear decision boundaries.

First we select some landmarks
Then we compute new features denoted f, based on the
proximity of the original inputs to the landmarks. This
means that we transform each input vector x to a vector f
the dimensionality of which is given by the number of
landmarks, since each input vector x which can be
represented by a point in the graph, has one
proximity/similarity value for each landmark (so if the
number of landmarks is smaller than the number of
features then we are performing a dimensionality
reduction). The hypothesis is formulated as a first order
polynomial of the new features f (instead of a high order
polynomial of original features x). The similarity of an
input vector with a landmark is given by a specific
function which is called a kernel. One type of kernel is the
Gaussian kernel.

2

2

2

||



ilx

e

−
−

where |x-l| is the magnitude of the distance

between vector x and l that can be calculated by
subtracting their components.

What the kernel does, is to produce a value close to 1 if a
point is close to a landmark and close to 0 if it is far from
it. Specifically, when an original feature x is close to a
landmark the Gaussian kernel gives a value close to 1, so
the feature that describes the similarity with that
landmark would be close to 1. If an original feature x is far
from a landmark then the feature value that describes its
similarity with that landmark would be close to 0.
The σ coefficient defines the smoothness of the kernel or
in other words the area around the landmark, within
which a point gets a value close to 1. In the example of the
graph, the landmark location is at x1=3, x2=5.

Selecting landmarks

What we do in practice is to select as landmarks all the
points of the training set. So the parameters θ will be of
the same size with the training set and not larger, since in
SVM with kernels we only use linear features
(θ0+θ1f1+θ2f2+...θmfm). We don’t use higher order
polynomials for the hypothesis.

In this case we don’t use a large value for C as we do for
linear boundaries. A trick that makes the minimization of
the cost function more efficient is to transform the last
term as ΘΤΜΘ where M is a matrix that depends on the
kernel we use.

You could apply kernels to logistic regression too, but the reason that we don’t is that the computational tricks that make kernels
in SVM run efficiently, don’t apply to logistic regression.

Tips for running SVM
(with a library)

One other commonly used kernel is the “linear kernel”
which means that we don’t use a kernel but instead we use
a linear hypothesis function (first order polynomial) of the
original inputs x. it is just a linear classifier (forming a linear
decision boundary). y=1 if θΤx>=0. this can be useful in
cases which the number of features is large and the number
of training examples is small, so if you use a high variance
hypothesis you might risk overfitting.

Notice that we must do feature scaling before using the
Gaussian kernel, so that the SVM gives the same weight to
all features and not just to the one with larger values.

Mercer’s Theorem
In almost all cases SVM use either Gaussian or linear
kernels.

A kernel must satisfy this condition so that it allows us to
use a large class of optimization to solve efficiently.

String kernel: Similarity between two strings

Multi class classification

When m is huge SVM with Gaussian kernel might be slow.

In general algorithms are important but what is more
important you have and how skilled you are in error
analysis and debugging of your algorithm, to designing new
features etc.

---> Unsupervised Learning <---

K-means
It is an unsupervised learning algorithm.
It is an iterative algorithm with two internal steps. The first one is the cluster assignment and the second one the move
centroid step. It iteratively repeats these steps until convergence when no or only a few inputs change cluster after a move
centroid step. It turns out that you can define a minimization problem for K means but the objective function is not convex so
you might stuck to local optima.

Random initialization of centroids the number of which is
equal to the number of clusters that we want to identify.
Each data point is assigned to a centroid based on which one
is closest to.
The centroids are moved to the average position of their
assigned examples and cluster assignment is repeated.

If a centroid has zero inputs associated with it then we
either completely remove it from the centroids or randomly
reinitialize it.

K means can also work for non separated clusters.

It turns out that you can define a minimization problem for
K-means so that the process will stop when the optimum
values c and μ are found. The cost function measures the
average distance of each data point from its cluster centroid
and is called the distortion of the k-means algorithm.

The cluster assignment step which assigns each point to the
centroid that is closest to it, actually minimizes the
distortion (the cost function) with respect to c holding μ
fixed, since it minimizes the distance of the points from their
assigned centroid.
While the move centroid step minimizes the cost with
respect to the centroids, since by moving to the average
position minimizes the average distance from it.

So the minimization is done in two steps.

Local and global optima

The objective function is not convex so you might stuck to local optima.
The solution which will be found, depends on the selection of the initial
centroids.
A typical way to initialize them is to randomly pick k data points and
define the centroids there.

For k between 2-10 there are high chances of being locked in local
optima so the solution is to run k means with a lot of different
initialization values (50-1000 different runs) record the final cost
function for each one and pick the one with the lowest.
Notice that if k is very large, larger than 10 for example, then there are
very low chances of being locked in a local optimum so you can avoid
the multiple initialization approach.

Choosing the number of clusters is mainly a manual process.
There is a method called the elbow method but it is not
always applicable.

One other common way is to choose it based on a business
need and then evaluate the selection based on the
performance on the actual business.

Principal Components Analysis
Principal Components Analysis (PCA) is the most common algorithm used for dimensionality reduction (reduction to a linear
supspace)

Dimensionality reduction

When you have highly correlated features (for example the
length in cm and in inches) then you can combine these
features into one. The line in the example is not a perfect line
due to round off errors.

You do this by projecting the points in a line or a surface or
an equivalent lower dimension object.

For example if you have 50 features describing a country’s
state (GDP, mortality, literacy etc.) you could maybe
decrease the number of features to two, one that describes

the state of the country as a whole and one that describes
the state of the country per capita.

The most used algorithm for dimensionality reduction is
Principal Components Analysis (PCA).

Principal Components Analysis
It tries to find a lower dimension surface (of lower dimensions in relation to the original feature space) onto which to project
the data. This surface is found by minimizing the square of the projection errors (the distance that the data points must be
moved). In other words, we want to get the original data set which is an n dimensional object (x->Rn) and find a lower dimension
representation of it (z >Rk). The number k is the number of principal components that we retain. Actually what PCA does is
trying to compresses the data by keeping as much information from them as possible. You can also go from the compressed data
back to an approximation of the original data (reconstruction from compressed representation).

In case of a reduction from n to k dimensions, we want to
find k n-dimensional vectors (which define a k dimensional
space) and project the data onto the linear subspace
spanned by these vectors.

Have in mind that you need to perform Mean normalization
and scaling before applying PCA.

Notice the difference between PCA and linear regression.
PCA tries to minimize the projection distances (called
projections errors in the context of PCA) while linear
regression tries to minimize the prediction error which is a
different distance. This means that the optimum solution
would be different for each algorithm.

PCA algorithm implementation

Sigma is the covariance matrix
(multiplying features with each other, see
below for intuition).
Then we calculate the eigenvectors of this
matrix which will be as many as the
dimension of this orthogonal matrix,
which is the dimensions of the original
feature space. If we want to represent this
object with a k dimensional space we
select the first k eigenvectors (the first k
columns)
The new input vectors z are calculated by
multiplying the selected eigenvectors
matrix with the original feature vectors.

The mathematical proof of why this process results in the k surface that minimizes the projection errors is not presented.

In more detail

The covariance matrix always satisfies a mathematical property
called symmetric positive semi definite, so the svd (singular
value decomposition) and eig octave methods give the same
result, the same eigenvectors. The svd is numerically more stable
than the eig method.

Choosing k

A way to get an insight for it is to think the 3d to 2d
reduction. If the points are more or less upon a plane then
the projections would be small and the ratio would be small.
But if there are scattered all over the 3d space then the
projections would be large and so will be the ratio.

So you choose the least amount of principal components
so that 99% of variance is retained. So you can compress
the data by a large factor by keeping a very high percentage
of its variance.

You don’t have to do the first option of iterating through k
and running PCA for each one. It turns out that the ratio can
be calculated from the S matrix which is diagonal. So you run
PCA once and then just iterate k to compute different ratios
and find the one that you want.

95 to 99% retained variance is a commonly used range and
it is usually retained by a 5-10 times fewer dimensions.

Good and bad use of PCA

PCA is used for compression or visualization purposes (to
make some reduction to 2d or 3d so that you can visualize
something useful)

Typical application in supervised learning.

Notice that we only use the training set for finding Ureduce.

But PCA must not be used without reason since despite the
fact that it can retain a high variance of the data, it
doesn’t take into consideration the labels (the y values)
and this means that you might lose some valuable
information.

Don’t use it for overfitting, use regularization instead.

Don’t use it if you can do it with the original features.

Anomaly detection

Gaussian distribution

We generally consider that the examples of the dataset are
non-anomalous. We want an algorithm to tell us if a new
example xtest is anomalous. We do it like this: Given this
unlabeled training set we will build a model p(x) that gives
the probability of x. then if a specific xtest has very low
probability lower than a threshold, then we say that it is an
anomaly.
The problem of estimating p(x) is called the density
estimation problem.

Applications of anomaly detection

Some possible features used for fraud detection:
1. How often a user logs in

2. The number of pages he visits per session

3. The number of transactions per day

4. The number of posts of the user in the forum

5. The typing speed of the user

The Normal (Gaussian) distribution

If you suspect that the samples are distributed according to
a normal distribution then you can try to estimate the values
of the parameters μ and σ from the dataset (for each
feature). The estimates calculated by these formulas are the
maximum likelihood estimates of the parameters μ and σ.

.

Try to think features that describe the general properties
of the system that you examine hoping that some of them
would take small or large values in unusual cases

There are vectorized versions of parameter estimation

We assume that each feature is distributed according to a
normal distribution which we want to estimate. We also
assume that the features are independent with each other
so the probability of a specific feature vector (a
combination of specific feature values) is given by the
product of its individual feature s probabilities.

Notice that we assume independence on the values of the
features, but it turns out that this algorithm works well
even if the features are not independent.

Evaluating anomaly detection
in order to evaluate it we need a small number of known anomalous data points. We fit a model p(x) using the training data set
of known non anomalous data points and we split the anomalous points to the CV and test sets. We use the F1 score
(precision/recall trade off) for evaluation since the classes that we have are very skewed because we only have a small amount
of known anomalous data. A small number of anomalous data points can be contained in the training set without affecting the
whole process.

Try many ε values and pick the one with the larger F1 score.

Vs supervised learning

Choosing features
Choosing features is critical on how well your anomaly detection algorithm works

-is the feature a normal distribution?
Transform data to make it more like a normal distribution
(for example take log(x+c), or x1/c etc). so xnew=log(x)

By examining the green example which is an anomaly that
wasn’t captured by the x1 feature we can understand that
there is another additional feature x2 that makes this
example being anomalous.
Choose features after an error analysis (manually checking
the error predictions of the algo and modify your features
accordingly).

Chose/create features that take enormously large or small
values in case of anomaly

Multivariate Gaussian distribution

Assume you have the upper left corner green
example. If you have just two features that follow the
normal distribution, then the green example is
within the normal examples for each individual
normal distribution. But obviously it is an anomaly.
The reason that it is not caught, is that having two
features with normal distribution assumes a circular
probability surface (the pink circles). But, we want
the blue ellipsis.

The solution is a multivariate gaussian distribution
which gives a probability distribution as a function of
both variables (actually as a function of their mean
and their covariance matrix).

Σ is the covariance matrix.

The covariance matrix

The diagonal of Σ simply shows the variance of each single
feature.

If there is a covariance between the features you get this kind
of probability distributions.

Have in mind that the surface or volume (or higher) of a
probability distribution is 1.

Putting it together

This is how you calculate μ and Σ

Notice that the original model (Gaussian for each feature)
is a special case of the multivariate case, where the axis of
the gaussian distribution are parallel to the features axis
(there is no covariance between features).

The original model is much more efficient
computationally, because the multivariate case
requires matrix inverting, so it is always preferred if
possible.

If there is a rare combination of feature values (like in the
example that was considered normal but was in reality
anomalous) then in order to use the original model, you
can redesign your features. For example take the ratio of
the two features. This way even if the values are normal for
each feature individually, the ratio of the values would be
not normal.

Non invertible covariance matrix
• If you have redundant (linearly dependent) features (x1=x2, x3=x4+x5 etc.) then the covariance matrix might not be

invertible and multivariate gaussian couldn’t be used.

• If m<n

Recommender systems

Collaborative filtering (automated feature choosing)

If we have the features and their values we can make linear
regression to each user to calculate the θ parameters that
form a hypothesis that match the user’s ratings. Then use
that hypothesis to predict what rating the user will give in
new movies and recommend to them movies that they will
like.

 But in the general case we don’t have the features. There is
a way to find them automatically though. If we somehow
have the θ parameters for each user (we ask them to tell us
what movies they like), we can use it to calculate the feature
values. It is the same formulas as linear regression but now
you have Θ and solve for x.

But what happens if you don’t have nor θ neither x? then you
can guess a random initial Θ and estimate a x from it. notice
that you must choose the number of features, so the number
of parameters θ, but you don’t know what these features are.
Then use that x to estimate a new better θ and so on until
convergence. This is the collaborative filtering algorithm.
initially you don’t know what these learned features
represent, but you can introspect them and see. For example
if you have used two features, the algorithm might learn the
“romance” and “action” features on its own.

For this collaborative filtering technique to work, each user
must have rated many movies and each movie must be rated
by many users.

Vectorized implementation
Also called low rank matrix factorization

Y is the matrix of ratings. Num of columns is the
num of users. Num of rows is the num of movies.

Mean normalization
Sometimes it might be useful to so mean normalization to the data as a pre processing step. This would be useful to predict
ratings for users that haven’t rated any movie. The prediction would be that they will rate a movie with its mean value.

Large scale machine learning tricks
Tricks to help the efficiency of ML algorithm when dealing with big data (100m examples etc.)

Online learning

When there are a lot of data coming in real time, for example
website visitors on a large website, you can implement
online learning on them. You use each new example and
train your algorithm with just this example. Then you
discard this example. This is the point. Not having to store
and handle all that data. The first hypothesis is not good. But
as new examples come in the hypothesis keeps improving.
It also responds to changes in the trend.
If your real time data is not large, then you have to group
let’s say 1000 examples and train a model on them and
continue like this in batches. This is not online learning.

Map Reduce
This is a very important technique that allows many real world cases to run fast. It is as important as stochastic gradient descent.
There are popular implementations of map reduce like Hadoop.

You have a cluster of machines. You split the training set
into equal parts, and send each part to a different machine
in the cluster. This is the map step.
Each machine calculates the summation over the examples
in its part. Then the result is send to a master node that
combines them together to calculate the total sum. This is
the reduce step.

If an algorithm’s main computation load is to compute
sums of many terms, then you can easily parallelize that
work with map reduce.

ML pipelines

Text detection
It works with a sliding window. Notice that for pedestrians it’s easier to identify them because the aspect ratio of a human is the
same no matter his size. But for the text this is not the case.
For pedestrians you train a classifier to detect pedestrians for images of a certain aspect ratio. You get a sliding window of a
small specific aspect ratio and parse the image. Then with a larger one and so on. Notice that the classifier that you trained, gets
a 82*36 pixels image as input to tell if there is a pedestrian or not. So for the larger windows you have to resize the sliced image
to that size.
For text you train a classifier to detect letters in a rectangular image. Notice that you have to do data augmentation to get more
data for your classifier. Then you parse the image with windows of various sizes. Then you enlarge the areas that have letters
and form a parallelogram around the areas that have all text.

Character segmentation

You train a classifier to detect if there is a character split in
an image of specific size. Then you use a sliding window on
the detected text of the previous step and use the classifier
to detect character splits. This way you split the word in
characters and you can get images that contain complete
characters.
Then you move on to the next step, which is to detect what
character is in the image.

Diagnostics of ML pipelines

Ceiling analysis

Initially you measure the overall system accuracy. But
you want to identify which of the subsystems is more
important for the overall accuracy.
All subsystems have an error rate. So, the text detection
might detect areas without text, or skip areas with text.
Character segmentation will not work properly in these
cases. So the text detection affects the error rate of the
character segmentation. To disentangle the error rates
we apply the ceiling analysis.

We manually fix all the errors produced by the text detection system, so all of its prediction are correct. It now has zero error
rate. Then we measure the overall accuracy. It has been increased by a certain magnitude. This is the contribution of the text
detection to the overall system accuracy.
Then we do the same with the character segmentation and remeasure the overall rate.

This way we see the contributions of each subsystem and we can detect the most important one, so that we can focus our efforts
on it

Data augmentation
Distortions (generated data in general) should be representation of the type of noise/distortions in the test set

Get digits from different fonts and paste them in front of
different backgrounds, apply some blurring, rotation etc.

Practical
Diagnostics
Evaluating learning algorithms

There are methods that you can use to determine
which of these steps isn’t the source of the problem
so that you don’t lose valuable resources trying to
improve it, for example there might be no need to
collect more data. The problem might be
somewhere else.

Generalization error and model selection
(Training set, test set and cross validation set)
We always must choose some model parameters, for example for linear regression the degree of polynomial d or the
regularization constant λ. The performance of a hypothesis is measured with the generalization error which shoes how well the
hypothesis function generalizes in new examples.

A way to select these parameters is with a DOE study. Train 10 hypothesis of different degree and check the error on the cross
validation set. Pick the one with the smallest error. Notice though that the cv error is not the real generalization error of this
hypothesis. The real generalization error is the error on a different set, the test set. For this reason, you need 3 sets.

In order to evaluate a hypothesis, to get the generalization error
it is best to split our data to three sets not just two. A training set,
a cross validation set (CV) and a test set with proportions of
60/20/20. (or 70/30 if no cv set)

If we only used a test set
we try 10 different degrees of polynomial. We measure the test
set cost for each one and pick the one with the smallest cost. But
notice that this test set cost isn’t the generalization cost. Since we
picked the hypothesis based on the costs on the test set, we can
say that the hyperparameter d has been fit to the test set.

Actually, we call cross validation set the one that we use to
evaluate the cost for each hypothesis, and test set the one we use
to evaluate the generalization error

Notice that the formula for cv and test errors do not contain the
regularization term. They just measure how well the hypothesis
fits to the data.

For classification there is an alternative test set metric that might
be easier to interpret, the misclassification error. It is 1 if there is
an error and 0 if there isn’t. if all test examples are wrong (1) then
the misclassification error is 1. If none is wrong then it is 0.

High bias or high variance problem
Or in other words underfitting or overfitting.

One method that you can use in order to identify if your
model suffers from overfitting or underfitting is to plot the
training set error and the cross validation set error versus
the hyperparameter of interest (d for linear regression) in
the same plot.

As d increases the hypothesis can better fit to the data so the
training error would decrease. The CV error would be large
initially for small values of d since the hypothesis isn’t
flexible enough to fit well to the data it would decrease as d
increases but from a point on would start increase again
since if we have a very flexible hypothesis it would overfit
which means that the cost in the CV set would be large.

Large values for both means bias problem.
Large for CV but small for training set means great variance
problem.

In order to select a good value for the regularization
constant λ, you can use a similar plot of the training and CV
costs over the regularization constant λ.

Notice that we use the regularized cost function to train the
model, but we use the unregularized cost function for the
plot so that we can compare it with the CV cost which is
unregularized too.

Learning curves
Now we plot the training and CV error with respect to the training examples. The training examples is a fixed number for a given
problem but for the sake of plotting these curves we evaluate the costs for smaller numbers of training examples in order to see
the effect of the training data size and gain insights about the bias or variance of our model.

Characteristic of high bias situation is that both the
training and the CV errors are high and also similar to each
other.

In high bias cases more data don’t help. In these cases you
might try to add more features or additional hidden units
and recreating a learning curve. Now more data might
help.

The characteristic of high variance is that training error is
small and CV error is large. There is a big gap between
them.

In high variance situations more data might help (the
curves would eventually converge to a lower value)

As I understand it if the training error and the cross validation error are at the same level and this level is low then our hypothesis
has learned well from the data and generalizes well too.

In conclusion

Machine learning system design
How to start working on a problem

Error analysis
The process of manually examining the errors that the
model does on the cross validation set, to get some
insights on what you need to do to improve it.

You can use a numerical evaluation for example the CV
cost for testing various alterations and tuning.

For example, deciding what to do for building a spam classifier.

Error analysis

Choose to tackle the most important error cases

Stemming is a technique used to consider similar words
as the same one.

F1 Score
Skewed classes and Precision/Recall

Skewed classes
The case in which we have much more examples from
one class than from the other class. In these cases the
cross validation error would not be a good metric for
the performance of the model. If the CV error in a
binary classification problem is 1% you might think it
is good, but if only 0.5% of the training and cv sets is of
one class, you could have an algorithm that just
predicts 0 all the time and does better than your 1%
error model.
In cases like these we need other metrics

Precision = Positive Predictive Value = TP/ (TP + FP)
Recall = Sensitivity = TP / (TP + FN)

In the above example the algorithm that predicts
always 0, would have a recall of 0, so we would know
that it hasn’t learned from the data even though it has
a 0.5% error.

Every classification algorithm exhibits a tradeoff
between precision and recall. If you want to increase
precision you have to reduce the false positives, which
means that you will make your model harder to output
a positive. This would mean though, that it would be
easier to predict negative which will increase the false
negatives.

If you want to predict 1 only if you are confident
enough, then you might choose to predict 1 only if
h(x)>0.7 for example instead of >0.5. Such a threshold
would give a high precision but a low recall.

There is a single metric that is used in order to evaluate
algorithms based on their precision and recall values.
It is the F1 score.

F1 score
It short of gives a greater weight to the low value either
this is recall or precision. If one of them is close to 0
then it would be close to 0 too.

In practice you can try a range of different threshold
values and evaluate their F1 score on the CV set to pick
the one you want.

The reason for which the F1 score is important in problems with skewed classes, is that in these cases it is difficult to grade the
model based on the error rate. If the classes are not skewed and you have let’s say a 50/50 case, then if the error rate on the test
set is 1% you know the algorithm is good. Because if it always predicted 1 or 0 the error rate would be 50%. But if the classes
are skewed like in the cancer case, then you must use the F1 score.

Common approach for structuring a good prediction model
In general, a way to think of structuring a good prediction model is first to ensure that the input features have sufficient
information to predict the output accurately. A way to evaluate that is to show the features to a human expert on the field and
ask them if they can confidently predict the output based on these features. Then you must think about the bias and variance of
the model. First you must ensure that you have a low bias model by choosing one with many parameters and then ensure that
this model will have a low variance too, by collecting a huge amount of data, so that the model would not be able to overfit.
(We already saw in which cases we might need additional data, so this is just a clarification)

This research paper from Banko and
Brill (2001) was very influential
(although these algorithms are not
currently used that much). Usually
more data means better
performance. But this is true only in
some cases as we already saw. It is
true when
1. The features have sufficient

information for the output

2. The model has low bias

3. Then there is a meaning in trying

in having a lot of data

Ceiling analysis
Ceiling analysis

Variance between predictions in regression

Each red line is a NN with different parameters. The
green line is the variance of these different NNs
with each other, the variance between multiple
predictions essentially. The smaller the variance
the closer you are to the training cloud (the
training manifold). This is an important take away
that can tell you how well you do. Because it is not
that easy to know how well your regressor does. So
you train multiple of them, and you check the
variance between them. If it is small, or smaller
than some other models then you might be good.

Notice that when using ReLU the out of data domain
prediction is linear while if you use tanh or sigmoid
it is not linear. I think you just extend the last part
of the linear piecewise function in one case and the
sigmoid like one in the other.

Regularization

Intro

For an intuition of how regularization helps to address
overfitting, we can think of a 2d hypothesis where we
penalize θ3 and θ4, forcing them to have low values. This
means that their contribution to the hypothesis function
becomes small, leaving only θ0 and θ1 as important and this
results to a curve that looks like a quadratic one with a few
disturbances that fits well to the data.

We enforce parameters to become small by adding a big
scalar for these in the cost function. So in order to minimize
the cost function these parameters must be really small. (I
guess we use the squared parameters so that the sign of the
parameter makes no difference)

It can be shown that if you use small values for the
parameters Θ of the hypothesis function, has the effect of
producing smoother (simpler) hypothesis functions. A way
to think of it is that by making all parameters small, if we
have scaled feature values between 0 and 1, then the lower
order parameters would be more important. If we have
h(x)=θ0+θ1x+θ2x2+... if x is 0.1 then x2 is 0.01 which results
in small contribution for θ2 to h(x).

We regularize by adding an additional term in the cost
function. The constant λ is called the regularization
parameter and controls the magnitude of the parameters.
Usually we don’t regularize θ0.

Ultimately if all parameters become extremely small then
the hypothesis function would be equal to θ0 which is a
constant value that we usually don’t regularize. So if we end
up with a constant h(x) it is an indication that the
parameters are too small and we have to choose them to be
a little larger.

Essentially you minimize a function of that form. By controlling the magnitude of constant λ you control which of these
two terms you think is more important. Λ actually controls the variance of your hypothesis. You select a tradeoff between how
well you want your hypothesis to fit to the training data (A term more important than B) or how small you want the hypothesis
parameters to be so that the hypothesis is not that flexible (B larger than A).

Some intuitions

This might be an intuition on why smaller weights
mean smoother functions and consequently less
overfitting chances.
By decreasing the magnitude of the coefficients
(regularizing) you decrease the size of the space
that the hypothesis function defines. Thus the
hypothesis function can’t overfit to data outside of
that space.
If your hypothesis can do everything from being a
straight line to wiggling in every direction like a
sine wave that can also go up and down, it's much
more likely to pick up and model random
perturbations in your data that isn't a result of the
underlying signal but the result of just lucky chance
in that data set

For given data within let’s say -2 to 2 range, the
small coefficient function has less variance while
the large coefficient ones, can take larger values so
they can overfit if there was data points with large
values.

Regularized linear regression

The partial derivative for the regularized cost
function of a linear regression problem is given by
the formula inside the pink brackets.

Doing algebra we end up with a more compact form
which is actually the same as the standard linear
regression with the difference that Θj is multiplied
by a constant (1-αλ/m) which is usually smaller than
1 since α is small and m is large. So during
regularized gradient descent parameters θ become
smaller faster.

For the normal equation method the new form is as
shown. Notice that with regularization you avoid the
non invertibility problem too. It can be shown that in
the regularized form since λ>0 the matrix is always
invertible.

Regularized logistic regression

The formula for partial derivative of the cost function

Norms
L0 norm
The number of components of a vector that are non zero

L1 norm
The sum of the absolute values of the components of the vector. In context of DL minimizing L1 norm of a vector is called sparse
coding, it makes the vector more sparse. It is a convex function so you can run gradient based optimization. It is differentiable.
Minimizing L1 norm implicitly minimizes L0 norm (which is a non convex problem).

L2 norm
Sum of the squares of vector components, and the get the square root of this.

In Practice
All these are regularization techniques, which means they make the weights small.

Data normalization or Data Standardization
In the data preprocessing step, we normalize or standardize the data. Both operations have the target of putting all features on
the same scale. If the input data has four features [x1 x2 x3 x4] then these all x1s and all x2s etc. will lie within the same range.

Normalized data lie between 0 and 1
Standardized data have mean=0 and std=1 (do if xi follows a
normal distribution all xis will lie roughly between -1.5 and
+1.5 (within 3 stds)

Weight decay
Usually L2 norm of the weight matrix

Defined in the
optimizer setup

Dropout
Only active during training mode (net.train() in pytorch). At each pass there is a probability for neurons to be dropped out (not
existing). So the network has to learn more robustly (I guess it forces the model to have some redundancy on neurons, so a
feature might be represented by more than one neurons so when one is shut off the other representing that feature might be
on??? and they learn to represent only the most important features)
At training a neuron has probability p of dropout.
At testing we multiply weights outgoing from the hidden neurons by 1-p.
So if it had a probability of 70% being off during training (so it was shut off 70% of the time), then it contributes for 30% of its
value on test.

You select to which layer the Dropout is applied.

Have in mind that if you use dropout of 20% then in order to keep the norm of the vector constant despite the 20% reduction of
components, you need to increase the magnitude of the other components by 1/(1-0.2)=1.25

Batch normalization
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739 good explanation and practical tips
https://blog.janestreet.com/l2-regularization-and-batch-norm/ batch norm vs weight decay

normalize

scale and shift
Unlike the input layer, which requires all normalized values to have zero mean and unit variance, Batch Norm allows its values
to be shifted (to a different mean) and scaled (to a different variance). It does this by multiplying the normalized values by a
factor, gamma, and adding to it a factor, beta. Note that this is an element-wise multiply, not a matrix multiply.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://blog.janestreet.com/l2-regularization-and-batch-norm/

What makes this innovation ingenious is that these factors are not hyperparameters (ie. constants provided by the model
designer) but are trainable parameters that are learned by the network. In other words, each Batch Norm layer is able to
optimally find the best factors for itself, and can thus shift and scale the normalized values to get the best predictions.

Moving average of means and std
In addition, Batch Norm also keeps a running count of the Exponential Moving Average (EMA) of the mean and variance. During
training, it simply calculates this EMA but does not do anything with it. At the end of training, it simply saves this value as part
of the layer’s state, for use during the Inference phase.
In inference we have only one sample. So to normalize it we use the EMA mean and std stored in the model.

This is what batch norm does. These 4 parameters are all learnable during
training. Operations 2 and 3 set a new std and mean for the data. This happens
per batch. So in a layer with 4 neurons (4 hidden features x1, x2, x3, x4) and batch
size of 256, we normalize x1 using its 256 values (calculating its mean and std).
same for the other features.

This process makes the weights not become imbalanced, some being vary large
and some very small.
Increases training speed.

Batch norm Vs weight decay
When used together with batch normalization in a convolutional neural net with
typical architectures, an L2 objective penalty no longer has its original
regularizing effect. Instead it becomes essentially equivalent to an adaptive
adjustment of the learning rate!

So you either use one or the other I guess

In pytorch you define where you want the batch
norm to take place. After which layers.

Tips

We use Keras callbacks to implement:

• Learning rate decay if the validation loss does not improve for 5 continues epochs.

• Early stopping if the validation loss does not improve for 10 continues epochs.

• Save the weights only if there is improvement in validation loss.

Many of the tricks used in DL in this paragraph.

• If you change the batch size you need to find a different set of hyperparameters for your model too.

• A higher batch size often has a similar effect to lowering learning rate.

• After some epochs the cost starts increasing and you have to decrease the learning rate to overcome this region.

• Dropout?

• Batch normalization?

• Example of different data distribution between the evaluation and the training set: images in evaluation set were all unique,

while training set could contain same images (but with different captions). I added more training data along the way to

overcome this and make the error rate decrease further.

• Then @_arohan_who had been suggesting great ideas along the way mentioned that I should try to train in full precision,

and update beta1 momentum (to overcome the cost plateau)

Tricks for efficient backpropagation

L1 and L2 regularization. We add a term to the cost with the effect
of making the weights smaller at every iteration.

Dropout
In pytorch dropout is implemented as a layer. It is applied to the
output of a layer, and it randomly makes some of its activations 0.
This forces the network to not distribute the information of some

Weight initialization
The concept is that the weights are initialized randomly
in a way that if a unit has many inputs the weights are
smaller than if it had few inputs. Usually the inputs are
normalized (0 mean unit variance). So the weighted sum
increases by the sqrt(number of input units). We want
the weighted sum to be fairly the same size both when
there are many and few inputs and we want it to be fairly
in the same size with each inputs (0 mean unit variance).
So the weights become smaller by a factor of
1/sqrt(nOfUnits).

This is built into pytorch. There are a few options (He,
Xavier, LeCun) but they are all based to the same
concept.

• He initialization works better for layers with

ReLu activation.

• Xavier initialization works better for layers with

sigmoid activation.

patterns in many nodes and become more robust. It has been
shown that dropout can decrease the generalization error in many
cases. But it might not be always necessary.

There are many variations of SGD. the learning rate can
be a scalar, or a diagonal matrix, or a full matrix. It can be
constant, or usually it is decreased according to a
schedule (pytorch has many built in schedules). ADAMS
is a kind of SVG where the learning rate is a diagonal
matrix the elements of which change in every step. In the
optim package of pytorch there are a lot of them to
choose from.

Datasets

CRISP DM
CRoss Industry Standard Process for Data Mining (CRISP-DM)

The CRoss Industry Standard Process for Data Mining
(CRISP-DM) is a process model that serves as the base for a
data science process. It has six sequential phases:

1. Business understanding – What does the business

need?

2. Data understanding – What data do we have / need? Is

it clean?

3. Data preparation – How do we organize the data for

modeling?

4. Modeling – What modeling techniques should we

apply?

5. Evaluation – Which model best meets the business

objectives?

6. Deployment – How do stakeholders access the results?

7. Published in 1999 to standardize data mining

processes across industries, it has since become the

most common methodology for data mining, analytics,

and data science projects.

Data science teams that combine a loose implementation of
CRISP-DM with overarching team-based agile project
management approaches will likely see the best results.

Active learning

Learning rate schedule
You choose one schedule like cosine annealing.

Pseudo labeling

Test-time augmentation

Model size, batch size and GPU

Could not go with deeper model than ResNet-34 because it wouldn’t fir on a single GPU with the large batch size input

Some Methods overview

Evaluating 5 different
methods or models.

Saliency analysis

Confusion matrix

What we learned what we didn’t

Visualization of feature
maps

Industry tips

Airbnb

Tesla

~1000px*1000px images running on ResNet-50 like models
(2019)

HydraNets (shared backbone multiple heads)
They can’t afford to have a NN for each individual task because the number of tasks are too many (~100) so they have to amortize
some of the computation and put some of the tasks on shared backbones. They call these networks hydra nets (shared backbone
with multiple heads)

DeepLabVV3 is a model architecture for semantic
segmentation

UNet is a model architecture for semantic
segmentation

FPN is a model architecture for object detection

There are single view tasks and across camera tasks. In the former the NN has to predict from a single image. In the later it has
to process the scene from multiple cameras (for example estimating depth). Depth of each individual pixel. You have to borrow
features from other hydra nets. So you have one hydra net for each camera. If you need more than one camera inputs for a
specific task, you have to combine the output features of multiple hydra nets and add an additional layer of processing on top of
them (optionally recurrent)

Across camera tasks

Predict the depth
(depth network)

Predict the road layout
(layout network)
The input is from 3 cameras (out of the 8 a tesla car
has). From these 3 they predict the road layout. Now
the networks predictions are not in image space but
in top down space. So the stitching up of the 3
cameras happens inside of this RNN (while the pave
ways edges where stitched up from individual
images predictions “manually” in c++ code)

RNNs on videos

Deep Understanding Tesla FSD (5 parts)
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57

Code

https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57

Hugginface

Benchmarks
BIG-bench and BIG-bench Lite (2021)
The Beyond the Imitation Game Benchmark (BIG-bench) is a collaborative benchmark intended to probe large language models
and extrapolate their future capabilities. The more than 200 tasks included in BIG-bench are summarized by keyword here, and
by task name here
BIG-bench Lite (BBL) is a small subset of 24 diverse JSON tasks from BIG-bench. It is designed to provide a canonical measure
of model performance, while being far cheaper to evaluate than the full set of more than 200 programmatic and JSON tasks in
BIG-bench.
https://github.com/google/BIG-bench

Vision
ImageNet

Speech
LibriSpeech

Text (NLP)
GLUE benchmark suite

https://github.com/google/BIG-bench

	Machine Learning
	---> Supervised Learning <---
	Linear Regression
	Univariate linear regression
	Multivariate Linear regression

	Gradient descent
	Gradient descent tricks
	Batch, Mini batch and Stochastic gradient descent
	Misc

	Logistic (sigmoid) Regression
	Overfitting
	Intro
	Addressing overfitting

	Neural networks
	Support Vector Machines
	SVM for linear boundaries
	SVM for non linear boundaries
	Tips for running SVM

	---> Unsupervised Learning <---
	K-means
	Principal Components Analysis
	Anomaly detection
	Gaussian distribution
	Multivariate Gaussian distribution

	Recommender systems
	Large scale machine learning tricks
	Online learning
	Map Reduce

	ML pipelines
	Ceiling analysis

	Practical
	Diagnostics
	Learning curves
	Error analysis
	F1 Score
	Ceiling analysis
	Variance between predictions in regression

	Regularization
	Intro
	In Practice

	Tips
	Industry tips
	Benchmarks

