Machine Learning
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Supervised learning
®  Regression problem: predict continuous valued output

® (lassification problem: predict discrete valued output

Unsupervised learning
®  (lustering problem: Here is the data, can you find some structure on them. A clustering algorithm can cluster the data in

different clusters.

---> Supervised Learning <---
Linear Regression

Univariate linear regression

Univariate (one variable) linear regression. For example find a linear function that maps the footage of houses (x) to their price
(v). The official terminology for the function is “h” from hypothesis. m is the number of training examples. He(x)=00+61*x. 60
and 01 are the parameters of the model. The formalization of this problem is to Minimize over 60 and ©1 the sum of squared
differences between predictions and real values [We multiply the sum by 1/2m, minimizing the (half of) average error in order
to simplify the math along the way]. minimize over 60 and 61 means find the value ®0 and 61 that minimize this expression
which is a function of 60 and 81. this expression | is called the cost function which is the objective function we want to minimize.
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linear regression’s cost function is always a convex function which means that it doesn’t have local optima but only one global
optimum.

m: number of data points (training examples)

n: number of parameters of the hypothesis function (number of features) that we want to fit to the data

Gradient descent
So how you minimize the cost function? One way is using the gradient descent algorithm

In order to find the hypothesis that best fits the data, we need to find the hypothesis parameters that minimize the cost function.
Gradient descent is one method that can be used to minimize a function, a function of the form J(60, 61, ..., 6n).

Each point of the surface corresponds to a specific hypothesis function, which has its own cost
value. You begin by selecting a random point in the surface. You consider one parameter as
constant which means that you get a slice of the surface, which gives you a 2d function of the
remaining variable. You want to move on that surface to the direction that makes the y value
(the cost) smaller. The easiest way to do this is to calculate the derivative in the point in which
you currently are. The derivative can be calculated by the data and the current hypothesis
predictions.

If the derivative is negative you have to move to the direction that increases the variable (and decreases the cost). Then you do
the same for the other variable. The two movements, one in each direction gives you your total move and your new position on
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the surface. When you reach to a minimum the derivatives there would be zero so the algorithm will converge, meaning that the
new values for the variables would be equal to the previous ones.

Gradient descent algorithm
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e A . | The parameters of the cost function (60 and 61 here) must be
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function surface. Then we repeat. As we approach a local minimum

gradient descent will automatically take smaller steps since the

( I\Q(xm) - 3“ \> derivative starts to approach 0 so it becomes smaller and smaller.
So there is no need to decrease the learning rate () over time.

( L. (*UB = 303); 54(‘\ You can calculate the formulas for the derivative terms and then
use them to run gradient descent.

M3

7 {
Qoj=0:2J(6),0,) = —=

6,

1

\
J—

M
9' ]:lLJ(”[)()l): —L——
. M

W)z

00,

(

"

'

Notice that if you try to minimize a random function that has many local optima, then gradient descent would converge to
one of those local optima without searching for the global optimum. But what is important with linear regression is that
its cost function is always a convex function which means that it doesn’t have local optima but only one global optimum.

Batch vs stochastic gradient descent

In a linear regression problem, at each step of gradient descent the gradient descent algorithm uses all the training examples. It
calculates the next values for its parameters by minimizing the average cost (the squared distance from all training examples).
This is called Batch gradient descent.

I guess that in stochastic gradient descent you randomly select some training examples at each step, so you actually create a new
cost function (a new surface) at each step which is an approximation of the real one and minimize there. As I saw most real
world cases use stochastic gradient descent because it converges faster.

The normal equation method

Have in mind that in linear regression you can analytically calculate the minimum of the cost function without using an iterative
process like gradient descent. That method is called the normal equation method. It has pros and cons, one advantage is that
you don’t need to care about setting a proper learning rate since it doesn’t use such a thing. But it turns out that gradient descent
scales much better for large datasets.

Vectorization

The partial derivatives of the cost function with respect to the parameters of the hypothesis are calculated in each time step and
they include the calculation of the hypothesis for all the training data. We can just iteratively evaluate for each data point or we
can reform the problem in a way that it can be calculated more efficiently.
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You just must create a Data matrix by adding a first column
of ones. The vectorized solution is much faster and more
compact. Prediction = Data Matrix * Parameters Vector

Also, if you have more than one competing hypothesis and
you want to calculate the price predictions for each one of
them, you can vectorize it using matrix to matrix
multiplication.

Have in mind that Matrix multiplication is associative
(A*B)*C=A*(B*C) but not commutative A*B != B*A

Multivariate Linear regression
(with multiple variables)
The variables are also called features.

Notations
Multiple features (variables).

7Slm (feet?) | Number of | Number of | Age of home Price ($1000)
o
bedrooms floors (years)
% % < 5 |
2104 5 1 45 460
— 21416 3 2 40 232 wmz= Lf_-l—
1534 3 2 315 —_—
852 2 1 36 178
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Now the hypothesis function that best fits to the data
describes a multidimensional object (in case of two
variables a two d linear surface).

In order to express the hypothesis formulation in a
vectorized form, we define an additional feature (feature
zero xo) that has value of one. Using it we can write the
hypothesis function as dot product of two vectors, the
transpose of the parameters vector and the features vector.
he(x) = OTx

Minimizing the cost function in multivariate linear regression with Gradient descent




—> Yoz |

Hypothesis: [19(1') =0Ty = 00110 + 6121 + 0oy + - - + Opn
Parameters: f5br—8n O wobl = dbsiad. miEaras
Cost function"_.ﬁ—“ :I

W 2m Z (ho(@'?) —y)?

Gradient descent:

Repeat {
- Hj = 01' — Y 'i(;, '%rﬁ——g‘&'-)- S(S)
} 1 (simultaneously update for everyj = 0,..., n)

The partial derivative of the cost function with respect to
any parameter of the cost function has a common formula.

New algorithm (n > 1):
Repeat { i as__S(S')
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So in multivariate gradient descent we just update more
parameters in each step, not just two as in linear regression
of one variable.

Have in mind that the gradient of a function gives you the direction of steepest ascend. So, to decrease it you move to the opposite
direction. The length of that vector gives an indication of how steep that curve is.

Gradient descent

Gradient descent tricks
Feature scaling

If the scale of the variables/features are similar (the range of values is similar) then gradient descent converges faster.

cost.

If the scale is not similar, for example x1 (0-2000) and x2 (1-5) then if
you select a good 61 then 62 has little effect on the cost. You can have a
bad 62 and still have a low total cost (since 81 is far more important).
On the other hand a small change in 81 would have a big impact on the

This situation causes slow convergence to gradient descent. This happens since initially you get a big step towards the correct
01 since the gradient of the cost function is big in the 81 direction and within a couple of steps you have reached the minimum
in the 81 dimension. Then you must move along the 62 direction which has a very small gradient (the slope in the vertical
direction is very small) so the steps would be too small and since you have one learning coefficient you can’t increase it since
this would cause a big step in the 81 direction which would increase the cost.

Maybe we can use two different learning coefficients one for each parameter? The common approach is to scale the data
appropriately so that the cost contours are uniform.
Get every feature into approximatelya —1 < x; < 1 range.

Feature Scaling
The trick is to make them approximately to -1 to 1 range.

Mean normalization ) o o8
This can be done by dividing each value of a feature with its
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with the range (or the standard deviation)

These two steps define the general rule x=x-u/s where s
could be the standard deviation of the feature or its range.

Feature choosing
With Choosing/designing features you can achieve:

® Feature dimensionality reduction

®  Polynomial regression (fitting more complex shapes to your data, not just simple straight lines)




Dimensionality reduction

Housing prices prediction
ho(x) = 6y + 0, x frontage + 0 x depth
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If you have some insights about the problem you are studying, then you can
use them to combine existing dependent features into a new one. This way
you reduce the dimensions of the problem which makes it simpler to solve.

Polynomial regression

You can solve polynomial regression problems using linear regression mechanics, by appropriately redesigning the features.

Polynomial regression
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There are cases in which a polynomial function would be a better
fit to the data than a linear function. For example assume you have
a one variable problem (the size of the house). Assume that you
know the size and the price of houses form a chart like this. In this
case a cubic polynomial would fit well to the data. A quadratic
polynomial would fit well to some values but it comes back down
again for large values of x so we don’t want it. A cubic function
would be better.

The trick to use linear regression mechanics to solve polynomial
regression problem is to redesign the features (feature choosing).
in this case we can create two new features where the second and
third are the size of the house squared and cubed respectively. But
what is also important now, is to do a proper feature scaling. Then
we can solve a linear regression problem to identify the correct
parameters of the polynomial.

Notice that if you just see the hypothesis function you would
assume that it describes a 3 features problem, for which each
feature affects linearly the price, but in reality it is a one
feature problem (the size of the house) that affects cubically
the price.

Notice that you could also use another polynomial with a square
root. Depending on your insights about the data you can design the
features appropriately.

Momentum

(from another source) the model keeps traces of the past gradient directions and doesn’t recompute the gradient in each step

but uses a previous gradient. It does this for some iterations. This way it might converge faster.
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Why Momentum Really Works

Q Starting Point

Step-size a = 0.0039 Momentum B = 0.57
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Why Momentum Really Works
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Step-size a = 0.0039 Momentum B = 0.86
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Convergence




The best way to understand if gradient descent has converged is to make a plot of the cost function relative to the number of
iterations. When the plot starts to become parallel to the x axis gradient we can say that gradient descent has converged. Another
way is to use automatic convergence which means to set a threshold € and if the cost decreases by less than ¢ in one iteration
then accept convergence. But it is not very easy to select the proper €. 10-3 might be enough for one application but not for
another,

1) J(60) The cost must decrease in every iteration of gradient descent. If instead it
I/ \M/\/ increases you should probably decrease a.
i o > | - Forsufficiently small «, J(6) should decrease on every iteration.
0. of iterations 0. of iterations o
Gradient descent not working. - Butif «v is too small, gradient descent can be slow to converge.

Use smaller cv.

Practically you should try different o values to see how they behave. Testing a
range for example 0.001 to 1 by increasing o by a factor of 3 each time. Select
the biggest possible that converges.

S
7

| No. of iterations

Normal equation method

Linear regression problems can be solved analytically too, using the normal equation method. You have a multivariate linear
regression problem. You add the zero feature. You have a cost function. You can find the extreme values of a function by equating
its derivative with 0. This is the main idea.

N m

; 7.0 | You have to equate with 0, all the partial derivatives of the cost
n+1 - (2)y _ ,,(0)2 ’
w ],((}BLﬁ") om Z(/'”(" )= y™") function and then solve a system of equations for the value of the
5 set — parameters. These values are the values that eliminate the partial
2 J@)=---=0 (forevery j)

26; derivatives and minimize the function (which is convex so we

Solve for 6y, 6, ..., 0, know that it has a global minimum). This would lead to a function
0= (XTX)'XTy

g= (XTX) ‘IXT@; that you have to solve:
m examples (z1), 1)), ..., (zm) y(m)) + n features. X is called the design matrix and its rows are the transposed
o Nt feature vectors. y is the training data vector.
() —

T
(f ) So this means that you have to compute the XTX matrix and then

invert it. This matrix would be a n by n matrix and the inverting

(desgn (x*) T operation has an efficiency of O(n3). this means that if the number

of features is very big this operation would be very expensive

X

n— which would make gradient descent far more efficient.
m training examples, n features.

Gradient Descent Normal Equation Have in mind that some rare cases XX might be non-invertible.
IR p—— . Tiomssdts.dhooss. If a matrix has rows or columns linearly dependent then the
i Fleeds manyHewtions: & DorEncadto itetste, matrix is not invertible, (matrix determinapt = 0). Some reasons

s Workswall svin « Need to compute for that could be 1. that some features are linearly dependent or

e 3 2. th t feat <n). Notice that th
o (@)J M B6) ere are too many features (m<n). Notice tha ere are

whenn is large.
= 8 libraries that can handle non-invertibility and still solve the

7 * Slow if 7 is very large. : e |
Av lo® i problem (pseudo-invertibility)
—_— A= looo
&=z -- -~ looDo Notice that you don’t need to perform feature scaling for the

normal equation method.

Batch, Mini batch and Stochastic gradient descent

When you have a huge number of training examples (m is huge) you must sum over all these examples to calculate the partial
derivative used in the gradient descent algorithm. You calculate which direction decreases the cost function for all examples. In
the version of stochastic gradient descent, you calculate the error based on only one example. In mini batch you calculate the
error based on b examples where usually 2<b<100. So you will make more gradient descent steps to reach to an acceptable
solution but each step will be much faster. The steps will not go directly to the direction of biggest decrease, but they will wonder
around the cost function somewhat randomly. Stochastic and mini batch gradient descent doesn’t find the global optimum, but
it oscillates around it.



Mini-batch gradient descent Minibatch might be more efficient than stochastic gradient descent if
Batch gradient descent: Use allm examples in each iteration you have a good library for vectorized calculations. The disadvantage
. . ) L is that you have an additional hyperparameter, the batch size, to
Stochasticgradient descent: Use 1 example in each iteration tune
Mini-batch gradient descent: Use bexamples in each iteration
b= Mini-betd, Site . b=lo . :__“,l_"i
Linear regression with gradient descent Stochastic gradient descent
ho(z) =) _ 05z, 5 - 1. Randomly shuffle (reorder)
=0 03 training examples
0.2
0.1
- o = 2. Repeat{
2 fori:=1,..., m{
03 = 0;:=0; - a(hg(z™) — y(')).r(l')
0.4 ” J 2 \
% (fOl’ every J =0,..., n ) 1000 -500 ~o S00 1000 1500 2000
} M= 300,000, 0od } !
Ratda 3“51-&4 Qesunt }

Checking for convergence

Stochastic and mini batch gradient descent doesn’t

Checking for convergence
find the global optimum, but it oscillates around it.

Plot cost(6, (='",y'")), averaged over the last 1000 (say) examples

To check convergence you plot the learning curve.

smadler &

3 These are some cases. In the case where it is flat, the
¢ algorithm doesn’t learn and you might try to find
<

other features or more data etc.
If it diverges use smaller learning rate a.
No. of iterations No. of iterations
/Q.,;u»,y/r,x
Y,
b aAp s T
N Qu;arb o( K
No. of iterations No. of iterations
Stochastic gradient descent In most cases we are ok with the result of stochastic
cost(8, (z9, yM)) = %(h”(.,.m) ) . ) gradient descent. But if we want a solution closer to
. 2\ Q the optimum we can try to decrease a as the
Tsnll) = 2_stt(()_(.,.(:).ym)) - L iterations progress. Although this isn’t used often,
- "r: = o1 \\ because we have two additional hyperparameters to
. andomly shuffle dataset. == 0
ne.
2. Repeat{ m\\ X N tune
for:=1,..., m { o N \
0; :=0; — a(hg(z'") - .:/"')J'(]') :: \5 b
(fOI'J =055 n) 05 N L\
-1000 -500 0 500 1000 1500 2000

}
}

Learning rate « is typically held constant. Can slowly decrease «

over time if we want ¢ to converge. (E.g. o = oo+ s

Misc
Minibatch
e The only reason to use minibatch vs stochastic is the parallelization.
e Its good to have in the minibatch samples that are different with each other.
e Minibatch size determined by the hardware you have. For large ANNs and a gpu let’s say 16-64
e Ifyou increase the batch size too much (in a big cluster for example) you accelerate the calculation due to increased
parallelization but you decrease the speed of convergence. So there is a limit until which it has meaning to increase the
batch size.
e The size must not be larger than the number of classes

A tip on normalization



Notice that when you normalize the features you might not need to calculate the mean and deviation based on all dataset,
because these quantities converge quite fast.

Normalization on the weighted sum values

Apart from normalizing the features, it's been shown that it is also important to normalize the internal state of the ANNs too, the
weighted sum values in other words. A technique to do this is called batch normalization. I guess that t1his is the reason why
you initialize weights with He and similar techniques. They try to achieve a weighted sum which is in the same range as its inputs
(zero mean and unit variance)

Logistic (sigmoid) Regression
For classification problems (the outputs are discrete values)

Linear regression is not good for classification problems. You might get lucky
and it might produce good predictions (using a threshold classifier output)

(Yes) 1

Mali RS e . . .
grecer but just one outlier can make it worthless.
(No) 0 43¢ \" —r
< “~umor Size
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Threshold classifier output hy(z) at 0.5:

If hg(x) > 0.5, predict “y = 1”

If hg(x) < 0.5, predict “y =0”

In logistic regression we want the prediction h(x) to be between
0 and 1. To achieve that we transform h(x) (passing through a
function g) in such a way that it would always produce values in
the desired range. Specifically we transform it to a logistic
(sigmoid) function.

In linear regression h(x)= 6Tx while in logistic regression we pass
, that through the sigmoid function. Now a training point xi
>Sigmoid function « = . corresponds to a specific z value (z=0Tx) and this z value has a
g(z) output which is the prediction value between 0 and 1.

Logistic Regression Model
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LLOgIStIC function

We interpret the output of the prediction function as a probability
of the specific input to give 1 as output. For example for a specific
x1if h(x1)=0.7 it means that the feature (the characteristic) with
value x1 has 70% probability of being 1 (whatever 1 might mean,
for example cat).

The formal way of saying this is by saying that the prediction h(x)
gives the probability that y=1 given x parameterized by 6.

Have in mind these values. A value of 4.6 corresponds to a logistic
value of 0.99 and -4.6 to 0.01

L\QU\ = ?(\3=l \% 1 ©) “probability thaty = 1, given x,
parameterized by 6”

. . As with linear regression we try to minimize the cost by
Logistic regression .1
finding the proper parameter values 6.
— hg(z) = g(6Tz) = Ply=r|¥8)
= hg2) =g i ) ?/3/" For a given data point x, each different 6 gives a different z
— 9(2) = T+e— = g which gives a different g(z). By modifying 6 you don’t affect
Suppose predictfy — 1“if ho(z) > 0.9 T the logistic function which is always the same, being 0.5 for
3 . z=0.

fa T o

—

predlct)."—l/ — 0" ifho(z) 205 — What we do is this. For each 'tra'unmg point (x,.y) if y=1 then

= we say that the correct prediction for that x, is h(x) or g(z)
hel =gl qiRr<e's 2 to be >= 0.5. But g(z) is >= 0.5 when z>=0 or 6Tx>=0. This

5@ 406 means that for points of the data set that have y=1, 8Tx must
be >=0.




Decision Boundary

X, #

xx \ = hg(z) = g(0o + 0121 + O222)

" 4} \
1T x -3 \ .
‘ o\ Lsiiad
SN i ooy
\ Y901 2 3 x
e F R —
e S >

Predict “y = 1“if =3+ 21 + 22

L g myihe ==
> o TS o S T

Non-linear decision boundaries

1

X, DR 7 o) S Y :
x X |/ ==he(z) = g(0o + 0121 + O2z2 ? G
e b s : ; '.
£ ) Ig:c’\ e 3=t +93.1"‘2 .2 0115)
PR L SR ONTR
s 'x M x
X (x

Predict “y = 1“if —1+ 22 +22>0

: NER Tl |

4D ‘
v, ho(x) = g(00 + 6121 + Oz + 0327
+0423 20 + O52323% + Ogaiwo +...)

Suppose that you have somehow calculated the correct
values for the parameters 6, in this example [-3 1 1]. The
function 6Tx expands to -3+x1+x2. If we want to predict 1
for points x for which y=1, then as we said we want 8Tx>0 -
> -3+x1+x2>0 -> x1+x2>3. This equation defines a line. If
a point x is on the right of that line then z or 8Tx would be
greater than 0 and g(z) would be greater than 0.5 so the
prediction would be 1. This line is composed of all points x
for which the prediction is exactly 0.5 and is called the
decision boundary. The decision boundary is a property of
the prediction function (of its parameters) and not of the
training data (the parameters though are chosen based on
the training data). In linear regression we plot the
prediction function itself, while in logistic regression
we equate it to 0 which makes it a whole different
function (the decision boundary) and plot that.

As with polynomial regression we can add some polynomial
terms to the prediction function in order to achieve non-
linear decision boundaries.

If z has a large variance it takes values that span the non linear part of the g(z).

N “non-convex” N “convex”
J(6) J(6)
; ‘ /’\
\\_/ﬁ“\ b
J
0 . 0 7
Logistic regression cost function
J(0) = # 3" Cost(hg(z?),y)
i=1
e ; B —log(hg(z)) ify=1
Cost{ho(z),¥) = { —log(1 — hg(z)) ify=0

Note: y = 0 or 1 always

Cost =0if y =1,hg(x) =1
ify=1 But as  hg(z) = 0
Cost — oc
Captures intuition that if hg(z) = 0,
(predict P(y = 1|z;0) =0), but y =1,
we’ll penalize learning algorithm by a very
large cost.
L) ”
O 1
Ify=0
’T —\ oq s =)
‘{Z“\> =S
) \

U 2
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0 She(z) —

If we use the linear regression cost function due to the fact
that the h(x) is now a non linear function (the logistic
function), the squared cost function J(x) would be non-
convex. This means that gradient descent would not be
guaranteed to converge to the global minimum. So we have
to define a different cost function.

The new cost function is actually two functions.

This way if y=1 and the prediction h(x)=1 the function -
logh(x) gives 0 which means that the cost is 0 since the
prediction is correct. But if the prediction is 0 then the cost
is infinite.

The opposite applies to cases for which y=0.

We chose that specific cost function based on maximum

likelihood estimation. It also has the nice property thatitis
convex.




Gradient Descent

m

%J(Q) i} gl(hﬁ(.r“)) _ g/(’)).J-ji)

J

J(0) = —L[3 yDlog hg(z®) + (1 — y) log (1 — he(z?))]
i=1
Want ming J(0):
Repeat {
0; :=06; — ()%—.](9)
} (simultaneously update all 6;)

The cost function can be written in the following form too:

Cotlhall = -9 loj(\oh\\ - ((-@ t‘fj (I-\\b(\(\B
which is a more compact form. Notice that the first term is a
product of a quantity with y and the second term a product
of a quantity with 1-y. so if y=1 the second term becomes 0
and when y=0 the first term becomes 0.

It turns out that the partial derivative of this cost function is
of the same generic form with the one for linear regression

T
with the difference that now /,(x) = 1/1 +e® ™. Wecan

also vectorize the calculations.

Have in mind that feature scaling is also needed for gradient
descent to converge efficiently in logistic regression too.

Other optimization algorithms

Optimization algorithm
Given f, we have code that can compute

- J(9) <
- ﬁ.](()) & (forj=0,1,:.:; n)
Optimization algorithms: Advantages:
- - Gradient descent - No need to manually pick o
- Conjugate gradient - Often faster than gradient
- BFGS descent.
- L-BFGS Disadvantages:

- More complex

Apart from gradient descent there are other optimization
methods too, that usually converge much faster. In addition
you don’t have to explicitly define the learning rate since
they use a line search algorithm to automatically define a
learning rate which can be different for each step.

Similar to gradient descent these algorithms use the cost
function and its partial derivatives so you need to provide
these to them.

Their disadvantage is that they are more complex to
implement so you need to pick a library that uses a good
implementation.

Multiclass classification
One versus All method

¢ i
One-vs-all (one-vs-rest): % AAA s B
s
A "
X X1
X, AA x X x i ¥ ) g (
X o O <
020 - 2 7% he O
O 4080
Xy X1
Class1: A « , % i
Class2: 0 < X xx he 09
Class3: X < O\

hy(z) = P(y = i|x; 0)

(i=1,2,3) X

Train a logistic regression classifier h,,")(f) for each
class i to predict the probability that y = 7.

On a new input z, to make a prediction, pick the
class i that maximizes

max h;,') (z)
1

n

One method for doing it is the One vs All method where we
train a logistic regression classifier for each class. Then
when we have a new data point and we want to classify it
we calculate the predictions from all classifiers and the one
that is more certain about the new input wins.

Overfitting

Intro

Overfitting means your model does much better on the training set than on the test set. It fits the training data too well and

generalizes bad. The main reason for overfitting is sparse data.




Example: Linear regression (housing prices) We say that the hypothesis has high variance or high bias.

8 8 High bias (underfit)
= & For example, if we use a line, the model has a preconception
E that the price of houses depend linearly on the size despite
Size Size Size
e N b+ yntGyz? > O+ Oy + Oyn? + By 4 Oyt the data to the contrary
~ u‘&’c“*u “‘al\ k_‘__‘l" “luﬂ ﬁsl\f" ‘0‘0“}'*.‘ . H‘J\\ Vichag o

High variance (overfit)

. ) If we use a high order polynomial then it has the possibility
Overfitting: If we have too many features, the learned 'hypothesns to fit to a great variety of data sets, it is very flexible, the
may fit the training set very well (/) = g 2. (he(=%) ~#7)’ =0), but fall space of possible hypothesis is too large, too variable and we
to generalize to new examples (predictprices on new examples). don't have enough data to constrain it to give us a good
hypothesis

Example: Logistic regression

Xy
Shg(x) = g(0o + 0121 + O3x2) (0o + 011 + Oz 9(00 -;9@1 +: 9229152'77 &«
(¢ = sigmoid function) +032% + 0423 N +03z722 + 12y
< +0sT122) T +0sziTs + ﬂaaﬂ+ )

Mdtie

Why too many features cause overfitting
Adding more features expands the hypothesis space making the data more sparse and this might lead to overfitting problems.

| had exactly the same question and since | wasn't able to really understand the reason based on the Latexthiough we'leamy that thereis an‘addiiicnal feature ini thisiSdme prottem: This would: mea fiat

RS T i p : each data point of the existing training set has also a second value that describes it, the value of the
existing answers, | made some additional search and thought about it for a while. Here is what | second feature. If we iry to plot it now, we might see something like this:
found. Feel free to correct me where I'm wrong.

The main reason for overfitting is sparse data (for a given model).

The three reasons that are mentioned in this answer could be narrowed down to "sparse data" for
your given problem. This is an important concept to understand since the sparsity of the data depends
on the number of features.

It is always easier to understand any concept if you think of it in its simplest form and find a way to
visualize it.

So let's see first how sparse data can cause overfitting using a two dimensional plot for a problem
with one parameter. If your hypothesis is a high order polynomial and the number of data points small,
then it would just overfit to the data. If you had more data points though it wouldn't overfit since it
would have to minimize the average error from many data points (more than what it could overfit to)
and that would cause it to pass from "the middle".

This means that what we were seeing before, was just the projection of the data points in the y.81
plane and that was the reason for which we mistakenly assumed that we had enough data points.
Now that we see the problem in its entirety, we can say that the data points are not enough, that data
is sparse.

Thus, by adding one additional feature we expanded the space of our problem adding one more
dimension to it and the data points which are part of this space, were expanded with it.
Now, suppose we have another problem for which apparently, data is not sparse.

So if we try to fit a hypothesis to this data we might get something like this. which is probably an
overfit.




If we had more data points though we could end up with something like this:

In conclusion. adding more features expands the hypothesis space making the data more sparse and
this might lead to overfitting problems.

Addressing overfitting

® Plotting the hypothesis

When we have only one or two features it is very easy to plot the hypothesis function over the features (a 2d or 3d plot) and not
only guess what polynomial order we want to use for the hypothesis but also check at the end if the hypothesis is overfitting to
the data. If it does then we can choose a polynomial with lower order and try again. When we have many features though it
becomes difficult to visually understand what’s happening. In these cases we must use other techniques to address overfitting.

®  Reduce the number of features

One way to address overfitting is to reduce the number of features. We can either select manually which features to keep or use
a model selection algorithm that automatically selects which features to keep. The disadvantage is that all features might be
important so by omitting some, we lose valuable information.

®  Regularization

Reduce the magnitude of the parameters 6. works well if all features contribute a bit to predicting y so we can’t reduce the
number of features.

Neural networks

A Neural network is a classifying algorithm that is useful for the creation of non linear hypothesis (non linear function of the
input). For problems with many features it is a much more efficient classifier in relation to logistic regression.

pixel 1 Theoretically you could use polynomial logistic regression

but the problem is that the number of quadratic terms (x12,

x1x2,x1x3, ... x1xn) in the hypothesis polynomial is O(n%/2)

s and the number of cubic terms is O(n3). So for a problem

- i with n=100 features you end up with hundreds of

%’3 '{;;g;si&g;o e thousands of “designed” features (the high order terms) in

- . > Learning
Algorithm

pixel 2 the hypothesis. This would result in overfitting and
o- . . .
pixel 1 intensity . performance problems and make it a non viable solution. So
= | PR we need an alternative.
i IZSO(Z;' i
t e = A picture 50 by 50 pixels has 2500 pixels. If we use the
+ Cars pixel 1 Quadratic features (z; X x;): =3 million

o ~——" features greyscale values for describing pixel intensity and use them
"o | as features for a classification problem, then we have 2500

features which would lead in millions of designed features

in a polynomial hypothesis.

(the chart’s axis are pixel intensity values)

The input to the classifier is the intensity values of the pixels of
the input image. It has to classify the input as car or non-car
based on them. So the number of input features is the number
of pixels.

An alternative classification algorithm is an artificial neural network.



Neural Network
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A neural network defines a function h that maps from an
input space x to a prediction space y. By varying the
parameters © (which are now called weights) we get a
different mapping, or in other words a different function or
hypothesis h.

Each neuron’s sum of weighted inputs, pass through a
logistic function g and the output of that is the neuron’s
output. This applies also to the output layer. So in this
setup neurons output (activation) is always between 0 and
1. The hypothesis is the activation of the only unit of the
output layer which is also between 0 and 1.

Notice that there is also an additional input x0 which is not
always shown in the graphs, that is called a bias unit and
has a value of 1 (x0=1, though its weights might change).
Why do we need it? see explanation below.

(a1® stands for “activation”, meaning the output value of
the first unit of the second layer)

This process of computing h(x) is called forward
propagation. We propagate the activation of the input
units (the input values) forward to the next layer’s hidden
units and so on.

The calculations for forward propagation can be
vectorized. Notice that we add also a bias unit to the hidden
layer whose value (activation) is 1. These activation values
will be weighted and similarly will produce the final output
(the activation of the output unit)

Neural network as logistic regression
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If you have a neural network with no hidden units
then it works exactly as a logistic regression
algorithm. The hypothesis produced is g(z) where z=
0Tx.

If instead there is a hidden layer then the inputs to the
output unit are not the original features but some
other values, some other new complex features that
have been learned from the original ones with logistic
regression. Each hidden unit represents a new
complex feature. This mechanism allows the ANN to
be able to form very complex non linear hypothesis to
fit to the input data.

The units of the last layer of a ANN (as any other unit
of an ANN) are doing logistic regression on their
inputs.

XNOR: Sometimes referred to as an "Equivalence Gate," the gate's
output requires both inputs to be the same to produce a high output.

Implementing some logical functions with ANNs. The
XNOR implementation requires a hidden layer which




L ) %2 z is composed of two units each of which calculates a
Putting it together: z; XNOR z, | slightly more complex function of the inputs, namely

@ @ = @ AND and (NOT x1)AND(NOT x2). Then these more
@ O he(a) @ il @ O hol) complex inputs are used to implement an even more
complex output. This gradual complexity is the
@ @ @ reason why ANNs could form really complex non
o aliDA @ o =z linear hypothesis (and thus decision boundaries).
N 7 ” v = 1, 2 are binary (0 or 1).

b 4 2 |
- = 0 X
2 ) 0 00 [ <
@// S A o o 1/l 5 e 2
\V 1 0|[IC ¢ *
@ 1 1\TU ol < f
—t] y=a1 XOR z2
{ ’ z; XNOR
NOT (z; XOR z2)
Multiple output units: One-vs-all. For multi class classification we use a method similar
N HN e to the One vs All in logistic regression. We have one
8';:]'{{ X N output unit for each class. This time the output is a
e vector.
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Why we need a bias

A simple way to understand what the bias is: it is somehow similar to the constant b of a linear function y = ax + b. It allows you
to move the line up and down to fit the prediction with the data better. Without b the line always goes through the origin (0, 0)
and you may get a poorer fit.

Consider this 1-input, 1-output network that has no bias In effect, a bias value allows you to shift the activation
. : —— function to the left or right, which may be critical for
1.2 £ig(0. 5k i )
TR Mol successful learning.

4 — Changing the weight wO essentially changes the
;S s "steepness” of the sigmoid. That's useful, but what if
a8 | P 1 you wanted the network to output 0 when x is 27 Just
[/ /7 changing the steepness of the sigmoid won't really
0.5 | I/ . work -- you want to be able to shift the entire curve to
4 the right.

Output

o That's exactly what the bias allows you to do. If we
"/ add a bias to that network, like so:

- i Input
y / X

. _ "~ . § w Output
7 Te— r_lr sig(v, "x + o ¥1.0)

-e.2 | : —
1 1 1 . — Wy
-10 -5 ] 5 I

Input Bias
1.0

Having a weight of -5 for w1 shifts the curve to the
right, which allows us to have a network that outputs
0 when x is 2.

How it works: The bias (multiplied by its weight) is
added to the weighted sum before it passes through
the sigmoid function. If it is -10, then for the specific
feature to be recognized (the sigmoid to be > 0.5) the




Output

- 1 need a large degree of certainty in the input, for it

— —— sum without the bias should be > 10 instead of simply

Sigll.0%x + -5%1.8) . . .

iacl.obe e oal@) greater than 0. So the sigmoid has been shifted to the
right. This kind of makes this specific feature to

) to be activated. Another way to think of the bias is
/ 1 a number that makes the specific neuron to tend

/ / to be active or inactive.
/ J Sigmoid N .
/ ) How positive is this?

& (wiar + woag + wsaz + - - + w,ax[=10))

“bias”

Cost function

The cost function is a generic form of the logistic regression cost function. The first term sums the cost of each output unit for
each training data point. The regularization term just scales all the weights of the network except from the bias units since we
don’t want them to become 0. The reason that we added them in the first place was to contribute some non zero input to each

layer.

Cost function

Logistic regression:

L: is the number of layers
sl: is the number of units (not counting the
bias unit) in layer I.

i=1 k=1

1(6) = 1 [Z ,,"’il ho(2®) + (1 — 3@ log(1 — 1,,,(,“',)} " A ’Z’H,_, k: is the number of output units
P us :*l. N ' N 2'”,—1 '
i — i
Neural network: Gﬁ
= ho(z) € REK  (hg(x)); = it" output A

m K
1 i i i i
= J(O) = - - [5 g !/(L,’lng(h(_.(.r‘ ')()A, + (1 - y}. Nlog(1 — (he(z' ’))L)}
(D]
L

~.

()J)k ) / .
69,0’(0+ “;}l*' \‘)‘_ -
1 Q —/—-.\O

Support Vector Machines

SVM for linear boundaries

SVM for linear boundaries is a large margin classifier

SVM Decision Boundary: Linearly separable case

Large margin classifier

It is an other classification algorithm that offers some computational advantages and an
easier optimization problem in relation to logistic regression. It can model both linear and
non linear decision boundaries.

In case of linear boundaries the characteristic of SVM is that it produces a large margin
boundary. In both cases there are mathematical tricks that formulate the problem in such
a way that it is computationally efficient. The first one is the linear cost function. Another
one for the linear case is the large value of C which gives the large margin.

For the non linear case we use the kernel method and a trick is the transformation of the
regularization term of the cost function. In all cases the SVM optimization is a convex
optimization problem (the cost function is convex) so a global minimum will always be
found (as opposed to using a neural network)
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The pink lines are the SVM cost functions
relative to z. They are a linear approximation
of the logistic regression cost functions. This
is what makes SVM more computationally
efficient.

Support vector machine
Logistic regression: \L

L

The cost function is transformed to CA+B
instead of the A+AB of the logistic regression
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The reason why SVM is a large margin classifier
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When C is very large (let’s say 100000) which means
that A is very small so that regularization is small (and
variance is large), the SVM model has an interesting
property. It tries to separate the positive and negative
examples with as big of a margin as possible.

The big margin is a consequence of the minimization
problem the objective function of which contains only
the B term for large values of C.




SVM Decision Boundary
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Alarge margin classifier is sensitive to outliers (because
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SVM Decision Boundary
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w = L5 Here is the mathematical explanation of the reason for

which the minimization problem leads to a large margin
decision boundary when C is very large.

We transform the objective and constraints expressing
them as vector norms and dot products. 6Tx is a dot product
between the two vectors, which can be represented as the
multiplication between the projection of x to 8 and the norm
of 0.

(60=0 means that the decision boundary passes through the
origin)

It can be proven that the vector 0 is orthogonal to the
decision boundary. Knowing that, we can measure the
projections of vectors x to 8 and conclude that a decision
boundary with big margin gives larger projections in
relation to one with small margin.

If the projections are small, then the norm (magnitude) of 6
should be large so that p*0>1. But the objective is to
minimize norm of 6. So the SVM optimization will not
produce such a solution. Instead it will produce a solution
where the projection to the 6 are large so that 6 can take
small values.




SVM for non linear boundaries

We use the kernels method. We select some specific points in the
feature space which are called landmarks denoted by 1, and the
hypothesis learns to predict 1 for input points close to some of them
and 0 for input points close to the rest of them. The result is the
formation of highly non linear decision boundaries.

Kernel

&m & Given x, compute new feature depending
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First we select some landmarks

Then we compute new features denoted f, based on the
proximity of the original inputs to the landmarks. This
means that we transform each input vector x to a vector f
the dimensionality of which is given by the number of
landmarks, since each input vector x which can be
represented by a point in the graph, has one
proximity/similarity value for each landmark (so if the
number of landmarks is smaller than the number of
features then we are performing a dimensionality
reduction). The hypothesis is formulated as a first order
polynomial of the new features f (instead of a high order
polynomial of original features x). The similarity of an
input vector with a landmark is given by a specific

T J/ assunt we function which is called a kernel. One type of kernel is the
s have B .
.- 1’4 Gaussian kernel.
©.=-°5, & =\, 8, 850 =l
23 — > 20° . . .
o AR s B il e where |x-1| is the magnitude of the distance

between vector x and 1 that can be calculated by
subtracting their components.

What the kernel does, is to produce a value close to 1 if a
point is close to a landmark and close to 0 if it is far from
it. Specifically, when an original feature x is close to a
landmark the Gaussian kernel gives a value close to 1, so
the feature that describes the similarity with that
landmark would be close to 1. If an original feature x is far
from a landmark then the feature value that describes its
« | similarity with that landmark would be close to 0.

The o coefficient defines the smoothness of the kernel or
in other words the area around the landmark, within
which a point gets a value close to 1. In the example of the
graph, the landmark location is at x1=3, x2=5.

Selecting landmarks




What we do in practice is to select as landmarks all the
points of the training set. So the parameters 6 will be of
the same size with the training set and not larger, since in
SVM with kernels we only use linear features
(60+061f1+62f2+..06mfm). We don’t use higher order
polynomials for the hypothesis.

In this case we don’t use a large value for C as we do for
linear boundaries. A trick that makes the minimization of
the cost function more efficient is to transform the last
term as OTMO where M is a matrix that depends on the
kernel we use.

SVM with Kernels
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You could apply kernels to logistic regression too, but the reason that we don’t is that the computational tricks that make kernels
in SVM run efficiently, don’t apply to logistic regression.

Tips for running SVM
(with a library)
Need to specify: One other commonly used kernel is the “linear kernel”
—>Choice of parameter C. ) which means that we don’t use a kernel but instead we use
Clivyesef Racret (senladtytoveting): a linear hypothesis function (first order polynomial) of the
E.g. No kernel (“linear l;grnel”) O.+ Oxi4- t On¥n 2 © e original inputs x. itis justalinear classifier (forming a linear
Predict “y=1"if "2 >0 5 lbae, m small “<% | decision boundary). y=1 if 8Tx>=0. this can be useful in
Gaussian kernel: . ,‘ cases which the number of features is large and the number
- (_ [l — l("IIQ) _ ‘ xe®, v emll of training examples is small, so if you use a high variance
202 J,where 1) =z(). . W leye hypothesis you might risk overfitting.
Need to choose _0_2. o, %“
7 v
‘LB,, 5
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Kernel (similarity) functions: & © Notice that we must do feature scaling before using the
. *

. . : :
: Z e Gaussian kernel, so that the SVM gives the same weight to
function £ = kernel (x1,x2) | . R
T ' all features and not just to the one with larger values.
f >||x1—x2 ||? X &H
=P | — —————m————— - .
K I 202 ¢
return S

-2 Note: Do perform feature scaling before using the Gaussian kernel.

\ X wxelR”
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L loso Ce,_{’ -8 ‘ot&(oomg
Other choices of kernel Mercer's Theorem
Note: Not all similarity functions similarity(z, ) make valid kernels. In almost all cases SVM use either Gaussian or linear
- (Need to satisfy technical condition called “Mercer’s Theorem” to make kernels.

sure SVM packages’ optimizations run correctly, and do not diverge).

10 x M%ﬁ\"'}:\“ A kernel must satisfy this condition so that it allows us to

Many off-the-shelf kernels available: ~ / S ~ use a large class of optimization to solve efficiently.
- Polynomial kernel: k{x 1) - A8 R @ 3@4/
o0y, eV, (KAt S . L .
o R v ~ ’ ( ~ String kernel: Similarity between two strings

4 v A
- More esoteric: String kernel, chi-square kernel, histogram

intersecti ‘ & \*\k“ ) 0

Multi-class classification Multi class classification

y€{1,2,3,..., K}
R

Many SVM packages already have built-in multi-class classification
functionality.
- Otherwise, use one-vs.-all method. (Train &' SVMs, one to distinguish

y =1 fromtherest, fori =1,2,..., K),get 0V 92 0
i ;Wi (iNT .. R s
Pick class 7 with largest (§))7z ‘A:TI PR
Logistic regression vs. SVMs When m is huge SVM with Gaussian kernel might be slow.

n =number of features (2 € R™*!), m = number of training examples

= 1fnis large (relative tom): (€. n>m, n=io,een , m=io- tess) | IN general algorithms are important but what is more

-, Use logistic regression, or SVM without a kernel (“linear kernel”) important you have and how skilled you are in error
S| If nis small, ™ is intermediate: (o | -toas , M= 10 - 1o,08e) €~ analysis and debugging of your algorithm, to designing new
—> Use SVM with Gaussian kernel o rle features etc.
o ¥ x©

if nis small, mis large: ~ (n=l-to00, m= Sepo0t)
> Create/add more features, then use logistic regression or SVM
without a kernel i

~
= Neural network likely to work well for most of these settings, but may be
slower to train.

---> Unsupervised Learning <---

K-means

It is an unsupervised learning algorithm.

It is an iterative algorithm with two internal steps. The first one is the cluster assignment and the second one the move

centroid step. It iteratively repeats these steps until convergence when no or only a few inputs change cluster after a move

centroid step. It turns out that you can define a minimization problem for K means but the objective function is not convex so
ou might stuck to local optima.
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S Random initialization of centroids the number of which is
Input: equal to the number of clusters that we want to identify.
- K (number of clusters) - . . . . .
- Training set {z(,2(®,...,2(m} Each data point is assigned to a centroid based on which one
is closest to.
+) ¢ R" (drop 2o = 1 convention) The centroids are moved to the average position of their
. assigned examples and cluster assignment is repeated.
K-means algorithm oo g P g P
= %
Randomly initialize K cluster centroids jt1, fi2, - - ., g € R® If a centroid has zero inputs associated with it then we
Repeat { R = = either completely remove it from the centroids or randomly
Csw Tfori=1tom reinitialize it.
el
05::3“ c'9 :=index (from 1 to K') of cIuster centroid
- = i
closest to z(") w M -)h,“
fork=1to K L», c®
‘“:o\x > Mk = average gmean) ef pomts assngned to cIusterl.
eor ® > (=2 P2, 9=
Lun _?
= L ¢o u-»l &
}
K-means for non-seErated clusters M, L K means can also work for non separated clusters.
T-shirt sizing

B

Weight

=S

Height

K-means optimization objective

- (~(i):

index of cluster (1,2,...,K) to which example z(%) is currently
assigned
- [k = cluster centroid k (i € R") < keiln. k3
Heti) = cluster centroid of cluster to whuch example 2(") has been
assigned *® =S ©eg

o

m

lel("—/lw»ll

J(W, ..., ™, .., LK) ¥,

Optimization objective:

— J(W, ..., ™ g, JLEK)

min

= (1) clm)

<y [y vy HK

It turns out that you can define a minimization problem for
K-means so that the process will stop when the optimum
values c and p are found. The cost function measures the
average distance of each data point from its cluster centroid
and is called the distortion of the k-means algorithm.

K-means algorithm

Randomly initialize K cluster centroids /t1, 12, ..., pur € R™
C\uster nm‘svw—-\* s\-e -
LQ:ZLC“‘,-' e ~Y) (_
Repeat { -y Pr Fxed)
orz=1tom

Mitimize T wt

o\

¢ := index (from 1 to K) of cluster centroid
closest to z(*)

e ) ,’f?r k=1toK
- ir := average (mean) of points assigned to cluster &
} Mmimmae SCY wM @

The cluster assignment step which assigns each point to the
centroid that is closest to it, actually minimizes the
distortion (the cost function) with respect to ¢ holding p
fixed, since it minimizes the distance of the points from their
assigned centroid.

While the move centroid step minimizes the cost with
respect to the centroids, since by moving to the average
position minimizes the average distance from it.

So the minimization is done in two steps.




Local and global optima

Local optima

.
xv

#x

~t

Random initialization

FOfi=1t01_09( So - \oo0O

- Randomly initialize K-means.
Run K-means. Get c(!) ™), 1y
Compute cost function (distortion)
wlth ,I((-(” (.(m). l’l\')

}

Pick clustering that gave lowest cost .J (¢

ol k4 A

The objective function is not convex so you might stuck to local optima.
The solution which will be found, depends on the selection of the initial
centroids.

A typical way to initialize them is to randomly pick k data points and
define the centroids there.

Random initialization

Should have K < m

Randomly pick K training
examples.

Set 111 jux equal to these
K examples.

For k between 2-10 there are high chances of being locked in local
optima so the solution is to run k means with a lot of different
initialization values (50-1000 different runs) record the final cost
function for each one and pick the one with the lowest.

Notice that if k is very large, larger than 10 for example, then there are
very low chances of being locked in a local optimum so you can avoid
the multiple initialization approach.

Choosing the value of K

Elbow method:

K (no. of clusters) K (no. of clusters) )

Choosing the value of K
Sometimes, you're running K-means to get clusters to use for some
later/downstream purpose. Evaluate K-means based on a metric for

how well it performs for that later purpose.
Y

S WAL XS WS, QL AN

5

Height

T-shirt sizing L

E.g.

Weight
Weight

Height

«
~ ™
c i c
s \ “ig\bow o
=1 =]
o (%]
c c
=] =]
- =
P P
3 /Qi/\’\‘_‘__g 3 \\\‘_‘ﬁ.
o o
—_ =
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Choosing the number of clusters is mainly a manual process.
There is a method called the elbow method but it is not
always applicable.

One other common way is to choose it based on a business
need and then evaluate the selection based on the
performance on the actual business.

Principal Components Analysis

Principal Components Analysis (PCA) is the most common algorithm used for dimensionality reduction (reduction to a linear

supspace)

Dimensionality reduction

Data Compression

9 (inches)

W 1 (cm)

U

KKK KKK HK—>
—

When you have highly correlated features (for example the
length in cm and in inches) then you can combine these
features into one. The line in the example is not a perfectline
due to round off errors.

You do this by projecting the points in a line or a surface or
an equivalent lower dimension object.

For example if you have 50 features describing a country’s
state (GDP, mortality, literacy etc.) you could maybe
decrease the number of features to two, one that describes




lpoo® —> \©sD®

Reduce data from 3D to 2D

Data Compression the state of the country as a whole and one that describes

the state of the country per capita.

The most used algorithm for dimensionality reduction is
383 Principal Components Analysis (PCA).

Principal Components Analysis

It tries to find a lower dimension surface (of lower dimensions in relation to the original feature space) onto which to project
the data. This surface is found by minimizing the square of the projection errors (the distance that the data points must be
moved). In other words, we want to get the original data set which is an n dimensional object (x->R") and find a lower dimension
representation of it (z >Rk). The number k is the number of principal components that we retain. Actually what PCA does is
trying to compresses the data by keeping as much information from them as possible. You can also go from the compressed data

back to an approximation of the original data (reconstruction from compressed representation).

Principal Component Analysis (PCA) problem formulation

z2 3D — 2D
) K=2
v, a i
Reduce from 2-dimension to 1-dimension: Find a direction (a vectoru'!) € R™)

onto which to project the data so as to minimize the projection error.
Reduce from n-dimension to k-dimension: Find k vectors ("), u(?) . . ., u®) &«

onto which to project the data, so as to minimize the projection error.

In case of a reduction from n to k dimensions, we want to
find k n-dimensional vectors (which define a k dimensional
space) and project the data onto the linear subspace
spanned by these vectors.

Have in mind that you need to perform Mean normalization
and scaling before applying PCA.

s not linear regression

Notice the difference between PCA and linear regression.
PCA tries to minimize the projection distances (called
projections errors in the context of PCA) while linear
regression tries to minimize the prediction error which is a
different distance. This means that the optimum solution
would be different for each algorithm.

PCA algorithm implementation

Principal Component Analysis (PCA) algorithm summary

- After mean normalization (ensure every feature has
zero mean) and optlonally feature scaling:

] m _4‘ —
Sigma = — (i) .
o m g <\ \ I (..n
~[U,s,V] = svd(Sigma) ; ")

- ‘ iga = =(/mx X
- Ureduce = U(:,1:k);
- z = Ureduce’ *x;
1 Ly

B B

Sigma is the covariance matrix
(multiplying features with each other, see
below for intuition).

Then we calculate the eigenvectors of this
matrix which will be as many as the
dimension of this orthogonal matrix,
which is the dimensions of the original
feature space. If we want to represent this
object with a k dimensional space we
select the first k eigenvectors (the first k
columns)

The new input vectors z are calculated by
multiplying the selected eigenvectors
matrix with the original feature vectors.




The mathematical proof of why this process results in the k surface that minimizes the projection errors is not presented.

In more detail

Data preprocessing

Training set: (1) 22 2(m) <
Preprocessing (feature scaling/mean normalization):
m

1 Q)
K= Doz
i=1 =
Reglace each é')with T — iy .
If different features on different scales (e.g., z1 =size of house,
x9 =number of bedrooms), scale features to have comparable
(s
range of values. ® x; -}l,,
W, €=

J <5

Principal Component Analysis (PCA) algorithm

Reduce data fromn-dimensions to k-dimensions
Compute ”covarir?nce matrix”:
2()) (=)

2
A— m —| N nxn

i=1 ve1  Vwm

* b
Compute “eigenvectors” of matrix ¥: =16
— |[U,S,V] = svd(Sigma) ;
n%A  madTix .

g ia’\’&

The covariance matrix always satisfies a mathematical property
called symmetric positive semi definite, so the svd (singular
value decomposition) and eig octave methods give the same
result, the same eigenvectors. The svd is numerically more stable
than the eig method.

Principal Component Analysis (PCA) algorithm
From [U,S,V] = svd(Sigma) , we get:

U= |u® w® | W] erenn
| | |
*
XEQ —_— 2 A\
AT
: T VT o i ‘é)
2(1\ “L\) “\u . u\k) % < %
(. | — () — \r:(
3 e el
- ~ St
Ufulu.'_ %t

Choosing k




Choosing k& (number of prmcnpalcomponents) G
Average squared projection error: = i LN oppe ¥
Total variation in the data: -+ % ! L

Typically, choose kto be smallest value so that

# :”:1 ” (8 '—Iu]zprm”

1 m

—= o 2im 9

-

< 0.01 (1%)

[

- “99% of variance is retained”

A way to get an insight for it is to think the 3d to 2d
reduction. If the points are more or less upon a plane then
the projections would be small and the ratio would be small.
But if there are scattered all over the 3d space then the
projections would be large and so will be the ratio.

So you choose the least amount of principal components
so that 99% of variance is retained. So you can compress
the data by a large factor by keeping a very high percentage
of its variance.

Choosing & (number of principal components)

Algorithm:
Try PCA with k=1 pe K
\(Compute L,.,,,,,‘.,.i“’.,.‘_”.
K if For givn
R *
150 180 — el K |_ B Sie
& <0.017 -
,:, Yy lz@2 { — < 6.0|
al -Z g\\ e
J
\<-. (%
e

You don’t have to do the first option of iterating through k
and running PCA for each one. It turns out that the ratio can

be calculated from the S matrix which is diagonal. So you run
PCA once and then just iterate k to compute different ratios
and find the one that you want.

95 to 99% retained variance is a commonly used range and
it is usually retained by a 5-10 times fewer dimensions.

Reconstruction from compressed representation

To xg

Note: Ma 2" — 2 should be defined by running PCA =
onlyon the tralmng set. This mapping can be applied as well to
the examples z'!) and 15,'{, in the cross validation and test sets.

2

X
X
i Iy L\\ «“g@ xr
B
:\ - 4 W o \J R W ¥
? Yo
_~:UT '*q;ew\—a; % &R
P % reduce ~¥ ¥
L ‘.’\(;:(w = Wrawe 3
> XZ * % m" nxk !
- 2] Nix )
Good and bad use of PCA
Application of PCA PCA is used for compression or visualization purposes (to
- Compression make some reduction to 2d or 3d so that you can visualize
- Reduce memory/disk needed to store data something useful)
CSpeed up learning algorithm <
Chose: & An 9o oL uorere wkan
(- Visualization
k=) o k=3
R Typical application in supervised learning.
Supervised learning speedup x ¢ & yp pp p g
—»1":/“’ (my ) (z m),/m) . .. L
""" Notice that we only use the training set for finding Ureduce.
Extract inputs:
Unlabeled dataset: =", 2(® ... . ™ ¢ RI000 &,
J PCA \L
(1) (2) _(m) € Rl()l)() . =
New training set: o ( )
“ p m m £ 3 —_—
} 00, ) D o




Bad use of PCA: To prevent overfitting
- Use =" instead of 2" to reduce the number of
features to k < n.— 1oces

Thus, fewer features, less likely to overfit.
Vod !

This might work OK, but isn’t a good way to address
overfitting. Use regularization instead.

m

1 . .
o ho(2) — 4@)2
> min o— E (ho(z**) — y**)

1=1

But PCA must not be used without reason since despite the
fact that it can retain a high variance of the data, it
doesn’t take into consideration the labels (the y values)
and this means that you might lose some valuable
information.

Don’t use it for overfitting, use regularization instead.

PCA is sometimes used where it shouldn’t be
Design of ML system:

- - Get training set {(z",yV), (=@, y?),..., (™, y(m)}
— - Run PCAtoreduce z'" in dimension to get -(%)

- - Train logistic regression on {(z'V,y"),.... (2™, y™)}
—» - Teston testset: Map .., to ="),. Run hy(z) on

{(::’l:r .'/,[.13, ) S (5;.":1{ .’l;v”:})}
-» How about doing the whole thing without using PCA?

Before implementing PCA, first try running whatever you want to
do with the original/raw data z'". Only if that doesn’t do what
you want, then implement PCA and consider using ="

Don’t use it if you can do it with the original features.

Anomaly detection

Gaussian distribution

Density estimation

- Dataset: {z1),z®,...,: (™)}
= Is ZTtest anomalous?
M oRed E(Q.
- i e)(xh“\ (<) _ S;‘\oﬂ
5 MOMQIJ
£ | p(*mﬁ Z¢ = 6k
; X
X
SEE '*"‘fv..‘.a/

Iy (heat)

We generally consider that the examples of the dataset are
non-anomalous. We want an algorithm to tell us if a new
example xtest is anomalous. We do it like this: Given this
unlabeled training set we will build a model p(x) that gives
the probability of x. then if a specific xtest has very low
probability lower than a threshold, then we say that it is an
anomaly.

The problem of estimating p(x) is called the density
estimation problem.

Anomaly detection example i

-» Fraud detection: Y (’(“)
(i) = ) PRy ®y
- z'") = features of user i’s activities o
G

»Model p(x) from data.
- Identify unusual users by checking which have p(z) <«
-» Manufacturing
- Monitoring computers in a data center.
» z'" = features of machine i
1 =memory use, =2 =number of disk accesses/sec,
3 =CPUload, =1 =CPU load/network traffic.
P )<«

Applications of anomaly detection

Some possible features used for fraud detection:
How often a user logs in

The number of pages he visits per session
The number of transactions per day

The number of posts of the user in the forum
The typing speed of the user

AR

The Normal (Gaussian) distribution

Gaussian (Normal) distribution
Say = € R If z is a distributed Gaussian with mean 1, variance o°.

X N\)((;A:')
S

wodbubd  ac

P(*;/A,s’)
( ( (xrﬂ“l)
e e =5 e SplT Ta




Parameter estimation
= Dataset: {z(V), z(?)

If you suspect that the samples are distributed according to
anormal distribution then you can try to estimate the values
of the parameters p and o from the dataset (for each
feature). The estimates calculated by these formulas are the
maximum likelihood estimates of the parameters p and o.

= 1. Choose features x; that you think might be indicative of
— 3 U
anomalous examples. $8 L o
. 2 2
— 2. Fit parameters yq,..., iy OF 559 o,
— (xﬁ < é-\\ /A‘lfll" ‘}A'\
d P A’FJ '} iy W
L ek
- (25" — j)? < 4 Ly R
3. Given new e)'(g;nple x, compute p(x):

Hi)”

>

2 1 (z; —
plx) = p(zi; pi,05) = - exp (— ]_ 7
’11 e ‘11 V2mo; 207

Anomaly if p(z) < &

Try to think features that describe the general properties
of the system that you examine hoping that some of them
would take small or large values in unusual cases

There are vectorized versions of parameter estimation

Density estimation
...... % NJ/(/“\, <)
"a ‘N(/‘\\ 560)

¥~ N pa, )

-Training set: {z(1)
Each example is z € R"

(%)
|
= P(x,,rue?)?(nf\/al)?(n fo. 3 - P(xn/b.(;\ &

n

e

(45 69)

e

We assume that each feature is distributed according to a
normal distribution which we want to estimate. We also
assume that the features are independent with each other
so the probability of a specific feature vector (a
combination of specific feature values) is given by the

product of its individual feature s probabilities.

Notice that we assume independence on the values of the
features, but it turns out that this algorithm works well
even if the features are not independent.

= et e ALeY)
*plaiin.t)

Anomaly detection example

<y /_G’ p(z1; p1,07%)
« . A
“7s B v
Vs p(a2; pa, 03)
e =0.02
p(zi),) =0.0426 > ¢
p(zioy) =0.0021 < g

Evaluating anomaly detection

in order to evaluate it we need a small number of known anomalous data points. We fit a model p(x) using the training data set
of known non anomalous data points and we split the anomalous points to the CV and test sets. We use the F1 score
(precision/recall trade off) for evaluation since the classes that we have are very skewed because we only have a small amount

of known anomalous data. A small number of anomalous data po
whole process.

ints can be contained in the training set without affecting the




Aircraft engines motivating example

> xiOHOO]éood (normal) engines
>(20 |

= M :
> Training set: 6000/good engines (4= <)

flawed engines (anomalous) 2-So

CV: 2000 good engines (y = 0),I0lanomalous (y = 1)
Test:2000/good engines (y = 0), 10lanomalous (y = 1)

4=

P PG e o pln )

Algorithm evaluation

Fit model p(z) on training set {z'), ... (™)}

On a cross validation/testexample z, predict

. 1
Y= 0

Possible evaluation metrics:
- True positive, false positive, false negative, true negative
- Precision/Recall
- F,-score

(anomaly)
(normal)

if p(z) <e
if p(x) > ¢

Can also use cross validation set to choose parameter &

Try many € values and pick the one with the larger F1 score.

Vs supervised learning

-> Large number of negative (y = 0)
examples. | p0<)| < =—

- Many different “types” of
anomalies. Hard for any algorithm
to learn from positive examples
what the anomalies look like;

- future anomalies may look nothing
like any of the anomalous
examples we’ve seen so far.

Enough positive examples for
algorithm to get a sense of what

positive examples are like, future <

positive examples likely to be
similar to ones in training set.

—

Anomaly detection vs. Supervised learning
Anomaly detection vs. Supervised learning ; . —
> * Fraud detection * Email spam classification
< Very small number of positive Large number of positive and < ’
examples (y = 1).(0-20is negative examples. + Manufacturing (e.g. aircraft * Weather prediction
common). engines) (sunny/rainy/etc).

* Monitoring machines in a data * Cancer classification

center

Choosing features

Choosing features is critical on how well your anomaly detection algorithm works

Non-gaussian features

P(X.,}J‘;CT\ ——
\k\
/\/ hist
Xy, <
Xy « K3
. ¥y e\
o | g

-is the feature a normal distribution?
Transform data to make it more like a normal distribution
(for example take log(x+c), or x!/c etc). SO Xnew=log(x)

- Error analysis for anomaly dete

F/Vant p(x)

p(z)
Most common problem:

[p(;r) is comparable (say,

and anomalous examples

K2
/7.'

0K o II\ Ry %X
* ST K

o

ction

large for normal examples .
small for anomalous examples z.

both large) for normal

By examining the green example which is an anomaly that
wasn't captured by the x1 feature we can understand that
there is another additional feature x2 that makes this
example being anomalous.

Choose features after an error analysis (manually checking
the error predictions of the algo and modify your features
accordingly).




- Monitoring computers in a data center

-, Choose features that might take on unusually large or
small values in the event of an anomaly.

—> &1 = memory use of computer

- T2 =number of disk accesses/sec

— 23 =CPU load «

x4 = network traffic < "
N CPU \ead _(ceu leal)
XS 2 nufx-p«-L e & Yl'.‘(’unr\& )\’—huug

Chose/create features that take enormously large or small
values in case of anomaly

Multivariate Gaussian distribution

Motivating example: Monitoring machines in a data center

xw-x:%ﬁﬂl( R
I (CPUtoad) &

‘;’, 22 (Memory Use)

—> I (CPU Load) =% 3 - =3
T2 (Memory Use) —

F(*\’)A'I (:

f(*l ")lli 6: \

Assume you have the upper left corner green
example. If you have just two features that follow the
normal distribution, then the green example is
within the normal examples for each individual
normal distribution. But obviously it is an anomaly.
The reason that it is not caught, is that having two
features with normal distribution assumes a circular
probability surface (the pink circles). But, we want
the blue ellipsis.

Multivariate Gaussian (Normal) distribution

- x € R". Don’t model p(z1),p(x2), ..., etc. separately.
Model p(z) allinonego.
Parameﬁ?é:u e R" E € R™*™|covariance matrix)

P(*A?}J,{>‘-

(

o Gl wep( (V7 €7 (o)

shaigy ok 5 ‘ Ak (Signa)

The solution is a multivariate gaussian distribution
which gives a probability distribution as a function of
both variables (actually as a function of their mean
and their covariance matrix).

Y is the covariance matrix.

The covariance matrix

Multivariate Gaussian (Normal) examples

0._ 0¢ 0]L. o6 o 0] L.
=2 = 0]*T |0 1 F=1olF= 1o o6 H=1o|[F=

The diagonal of ¥ simply shows the variance of each single
feature.
Multivariate Gaussian (Normal) examples

o I N 2 R

To T T9 : T T2 ‘ I

) («3») ) -
If there is a covariance between the features you get this kind
of probability distributions.




Have in mind that the surface or volume (or higher) of a

Multivariate Gaussian (Normal) examples
probability distribution is 1.

I O Y R £ B R R

Putting it together
This is how you calculate pand X Anomaly detection with the multivariate Gaussian
Multivariate Gaussian (Normal) distribution 1. Fit model p(z) by setting

. ®
R T R™ o » e %
» p=—3 o ] % e
T # 3 xX
(.r—,u)lZ“l(.r—/z)> m = .
1 m Gol X,} x,qx
i 7 il x
3 = = Z(.r(’) — )@ - p) d o X
—> - ‘ - ‘ i=1
%2 Ty B i i 2. Given a new example x, compute

T
1 Ty—1
Given trainings:'('et {M), 2™, .. 1;'('”')}6— (2m)%|z|3 °Xp <_§('1 R ll)>

1 . 5 1 .
i ©) i @) _ V(@ _ T
‘ﬂ[_ - Z_I & @_ = Z'](" p)(a 1) Flag an anomalyif p(z) < e

Parameters fi, 2

N =

1
= p(z; 1, L) = ——F—7 exp (—
TEHBE

x x

Parameter fitting: “l" (@)
X & I 2 =

Notice that the original model (Gaussian for each feature)
is a special case of the multivariate case, where the axis of
the gaussian distribution are parallel to the features axis

N 75 (there is no covariance between features).
Q(“) W — @

Relationship to original model

Original model:|p(z) = p(z1: 11 (07) x p(w2; pa03) X « - % 1)(4:-,,:;1,,.(;;’,)

SR k)
Corresponds to multivariate Gaussian
1 1 Ty—1
— p(z; p,X) = ———— exp (7.—(.1' —p) 2 (- ;1))
- PN B .
.L‘
<, ‘3 Q
where z’ & < :(
“ A Q )
- Original model vs. = Multivariate Gaussian The original model is much more efficient
‘ ‘ . l computationally, because the multivariate case
P(T15 41, 01) X+ - X P(Tni fin, Op) pleim ) = o = (-2 O ”) requires matrix inverting, so it is always preferred if
Manually create features to 1> Automatically captures : possible.
capture anomalies where z;, x2 correlations between features
take unusual combinations OL ' If there is a rare combination of feature values (like in the
values. %o . COU laed | | v - . . .
A Vr® e e I < <R S example that was considered normal but was in reality
> Computationally cheaper Computationally more expensive anomalous) then in order to use the original model, you
(alternatively, scales better to large can redesign your features. For example take the ratio of
T . .
n) winess, hbeswe Sl W the two features. This way even if the values are normal for
OK even if m (training set size) is Must have [ > 71 or else ¥ is each feature individually, the ratio of the values would be
small non-invertible. __ not normal.

Andrew Ny

Non invertible covariance matrix
e If you have redundant (linearly dependent) features (x1=x2, x3=x4+x5 etc.) then the covariance matrix might not be

invertible and multivariate gaussian couldn’t be used.
o Ifm<n

Recommender systems



Collaborative filtering (automated feature choosing)

If we have the features and their values we can make linear
regression to each user to calculate the 6 parameters that
form a hypothesis that match the user’s ratings. Then use
that hypothesis to predict what rating the user will give in
new movies and recommend to them movies that they will
like.

But in the general case we don’t have the features. There is
a way to find them automatically though. If we somehow
have the 6 parameters for each user (we ask them to tell us
what movies they like), we can use it to calculate the feature
values. It is the same formulas as linear regression but now
you have © and solve for x.

Problem motivation ) J
Movie Alice (1) Bob (2) Carol (3) Dave (4) T T2
(romance) (action)
Love at last 5 5 0 ] 0.9 0
Romance forever 5 ? ? 0 1.0 0.01
Cute puppies of ? 4 0 ? 0.99 0
love
Nonstop car 0 0 5 4 0.1 10
chases
Swords vs. karate 0 0 B ? 0 0.9
Collaborative filtering
Givenz'",... . ") (and movie ratings),
can estimate ¢'",..., o) =
Given o'V, ..., g,
can estimate z'",... . g("m)
CGuw O=2>%x—> O0->x->O05x—>---

But what happens if you don’t have nor 6 neither x? then you
can guess a random initial ® and estimate a x from it. notice
that you must choose the number of features, so the number
of parameters 6, butyou don’t know what these features are.
Then use that x to estimate a new better 8 and so on until
convergence. This is the collaborative filtering algorithm.
initially you don’t know what these learned features
represent, but you can introspect them and see. For example
if you have used two features, the algorithm might learn the
“romance” and “action” features on its own.

For this collaborative filtering technique to work, each user
must have rated many movies and each movie must be rated
by many users.

Vectorized implementation
Also called low rank matrix factorization

- 1, (D
(©™")
Predicted ratings: ') ol

Qo= [y

z'4))

Collaborative filtering /) K @

(Htr:.A))'I(J.lli)
p )) ((}lu.,b)'l‘(.'.l;fl)

(()(n,,i)l.‘(.’.(n,”))

-
~(R)~ . 3 \
>L - _()(ﬂ‘) - @ = é(n 6(1; . 8(r\ iy
~{ K‘:(nn\ y_ | \
Low eok Tokix Ooituabivn

Y is the matrix of ratings. Num of columns is the
num of users. Num of rows is the num of movies.




Finding related movies

For each product i, we learn a feature vector z'”) € R".

How to find movies j related to movie i ?

4y X "
I — < > i e

Sl = meie §

5 most similar movies to movie i:

 Find the 5 movies j with the smallest [z — 27|

> W, = Tomoaw . ¥+ aian , ‘L;—(..)A«u\ll g =---

‘Siu:\wl

Mean normalization

Sometimes it might be useful to so mean normalization to the data as a pre processing step. This would be useful to predict
ratings for users that haven’t rated any movie. The prediction would be that they will rate a movie with its mean value.

Large scale machine learning tricks

Tricks to help the efficiency of ML algorithm when dealing with big data (100m examples etc.)

Online learning

Online learning

Shipping service website where user comes, specifies origin and
destination, you offer to ship their package for some asking price,
and users sometimes choose to use your shipping service (y = 1),
sometimes not ( y=0 ).

Features = capture properties of user, of origin/destination and
asking price. We wantto learn p(y = 1/z:6) to optimize price.

Regeor O lt,a\ﬁ“_ Ceqlessian
ng&- (x, Y[ t.\sno(onlfa. {n user .

vr\"g

UPM-. S sy | (“Jz)

S_ﬁ 8;:7 &7 -« (D -4)-x (o)

When there are a lot of data coming in real time, for example
website visitors on a large website, you can implement
online learning on them. You use each new example and
train your algorithm with just this example. Then you
discard this example. This is the point. Not having to store
and handle all that data. The first hypothesis is not good. But
as new examples come in the hypothesis keeps improving.
It also responds to changes in the trend.

If your real time data is not large, then you have to group
let’s say 1000 examples and train a model on them and
continue like this in batches. This is not online learning.

Map Reduce

This is a very important technique that allows many real world cases to run fast. It is as important as stochastic gradient descent.

There are popular implementations of map reduce like Hadoop.

m= 400,000,000

G»\-_ 400 \

Map-reduce — 0
100) i i
Batch gradient descent: \tﬁw@ > [,;E(/lo(l())—l/)()/ ==
-~ Machine 1: Use(zV, y'V), ..., (1%, y1%),
oo /_’\
C.o.,\\.\.k .

(o) , (101)

7Mach|ne 2. Use 2V ")), ...,

N ﬁt-wx‘:‘
"=
P s e
- —> temp{? 2 -y “”(h,,u' ) -y ) - )l ® Sl
- Machine 3: Use (z®V) 200 | (2(300)_4,(300)) | = & Ges (
e temp®) = 3%, (ho(a) 0 g, 4 teng

y' |.:/

J ]
achine 4: Use («*1) @300 (z(100) 4, (400)) 4 ‘h;'.? *+‘Y »
1 1 (el 3
temp) 9 = Y1 o1 (ho(z?) — yD) . z’ G e
e \ tO,... ] Y\\

Map-reduce and summation over the training set

Many learning algorithms can be expressed as computing sums of
functions over the training set.

You have a cluster of machines. You split the training set
into equal parts, and send each part to a different machine
in the cluster. This is the map step.

Each machine calculates the summation over the examples
in its part. Then the result is send to a master node that
combines them together to calculate the total sum. This is
the reduce step.

If an algorithm’s main computation load is to compute
sums of many terms, then you can easily parallelize that
work with map reduce.

ML pipelines




Photo OCR pipeline
- 1. Text detection

- 2. Character segmentation

ANTIOUE MALLL

- 3. Character classification

A———-»A T—)T

~—>N

LA oaning > Cleomira

An

segmentation

Character

[ Image H Text detection }—{

Character

recognition ]

Text detection

It works with a sliding window. Notice that for pedestrians it’s easier to identify them because the aspect ratio of a human is the

same no matter his size. But for the text this is not the case.

For pedestrians you train a classifier to detect pedestrians for images of a certain aspect ratio. You get a sliding window of a
small specific aspect ratio and parse the image. Then with a larger one and so on. Notice that the classifier that you trained, gets
a 82*36 pixels image as input to tell if there is a pedestrian or not. So for the larger windows you have to resize the sliced image

to that size.

For text you train a classifier to detect letters in a rectangular image. Notice that you have to do data augmentation to get more
data for your classifier. Then you parse the image with windows of various sizes. Then you enlarge the areas that have letters

and form a parallelogram around the areas that have all text.

Character segmentation

ANTIOUE MALL

-8 &
\/ \

1 !

-l -l
vi I

I

(y=0)

ANTIVE M1

You train a classifier to detect if there is a character split in
an image of specific size. Then you use a sliding window on
the detected text of the previous step and use the classifier
to detect character splits. This way you split the word in
characters and you can get images that contain complete
characters.

Then you move on to the next step, which is to detect what
character is in the image.

Diagnostics of ML pipelines
Ceiling analysis

Estimating the errors due to each component (ceiling analysis)

\eosls

N

_—Character—_ Character~,

,x,w"“(
[ Image “ext detection ( ma )|
~— \\gegmentﬁt_iog. \recognition

& A Va & 7
What part of the pipeline should you spend the most time
trying to improve?

Accuracy

S o
Character recognition 100% < \\-’ /‘:

Component | Iv th ili lvsi
e p— S ilq " we apply the ceiling analysis.
— Text detection 89% <—
Character segmentation 90% €< ‘L W

Initially you measure the overall system accuracy. But
you want to identify which of the subsystems is more
important for the overall accuracy.

All subsystems have an error rate. So, the text detection
might detect areas without text, or skip areas with text.
Character segmentation will not work properly in these
cases. So the text detection affects the error rate of the
character segmentation. To disentangle the error rates

We manually fix all the errors produced by the text detection system, so all of its prediction are correct. It now has zero error
rate. Then we measure the overall accuracy. It has been increased by a certain magnitude. This is the contribution of the text

detection to the overall system accuracy.

Then we do the same with the character segmentation and remeasure the overall rate.



This way we see the contributions of each subsystem and we can detect the most important one, so that we can focus our efforts
onit

Data augmentation
Distortions (generated data in general) should be representation of the type of noise/distortions in the test set
Discussion on getting more data

1. Make sure you have a low bias classifier before expending the
effort. (Plot learning curves). E.g. keep increasing the number
of features/number of hidden units in neural network until
you have a low bias classifier.

2. “How much work would it be to get 10x as much data as we
currently have?”

Artificial data synthesis
Collect/label it yourself
“Crowd source” (E.g. Amazon Mechanical Turk)

Synthesizing data by introducing distortions Get digits from different fonts and paste them in front of
different backgrounds, apply some blurring, rotation etc.

Practical

Diagnostics

Evaluating learning algorithms
Debugging a learning algorithm: There are methods that you can use to determine
Suppose you have implemented regularized linear regression to predict which of these steps isn’t the source of the problem
housing prices. However, when you test your hypothesis in a new set of so that you don'’t lose valuable resources trying to
houses, you find that it makes unacceptably large errors in its improve it, for example there might be no need to
prediction. What should you try next? collect more data. The problem might be

somewhere else.
- Getmore training examples —> fixa, hgh worone

- Try smaller sets of features —» Sxe, high voiona

- Try getting additional features — %xa “gh bias

- Try adding polynomial features (z7, 23, zy22.etc) = Qe highh bias.
- Trydecreasing A = Fixes hgh s

- Tryincreasing A — &fixes \"&L‘ Vorionta

Generalization error and model selection

(Training set, test set and cross validation set)

We always must choose some model parameters, for example for linear regression the degree of polynomial d or the
regularization constant A. The performance of a hypothesis is measured with the generalization error which shoes how well the
hypothesis function generalizes in new examples.

A way to select these parameters is with a DOE study. Train 10 hypothesis of different degree and check the error on the cross
validation set. Pick the one with the smallest error. Notice though that the cv error is not the real generalization error of this
hypothesis. The real generalization error is the error on a different set, the test set. For this reason, you need 3 sets.



Evaluating your hypothesis

Dataset:
Size Price
2104 400
1600 330

(ovls 2400 369 | ey Mey =ro.
1416 232 o oy
000 Al “(:f("m
1985 300 / Kev, Yeu

. 1534 315 5 Ceoss vkotion

10 g4y 199 J sex (V) Mo
1380 212 —_— :

RO 243 }ﬂ«ﬂ

Train/validation/test error

Training error:

Jtrain(0) =

- 7”‘ Z(h‘(,m) —y@)2

Cross Validation error:

= § u m
Jew = ,,,, (ho(a

Test error:

Miest

Jtest(0) = ﬁ Z (/’II(~"'1:L/) = !I::.t/)z

i=1
Model selection
> WaS(S) = e — W
el e e

= e(ﬂ

¥ 1. he(z) =00+ 012
3\.2 ’l/)(.l'):()()+0|.l'+(7’_gl
3 3, /I,,(.r) =0p+6iz+ -+ 6323 ASQ.,(:@(‘“»

+ H]()J'l“ — 9 —> fev (Bu‘)

B st

‘°10 110( ) =0+ b1z + -

Pick 0 + 0121 + - - - + 042" <
Estimate generalization error for test set J;.q(0Y)) <—

In order to evaluate a hypothesis, to get the generalization error
itis best to split our data to three sets not just two. A training set,
a cross validation set (CV) and a test set with proportions of
60/20/20. (or 70/30 if no cv set)

If we only used a test set

we try 10 different degrees of polynomial. We measure the test
set cost for each one and pick the one with the smallest cost. But
notice that this test set cost isn’t the generalization cost. Since we
picked the hypothesis based on the costs on the test set, we can
say that the hyperparameter d has been fit to the test set.

Actually, we call cross validation set the one that we use to
evaluate the cost for each hypothesis, and test set the one we use
to evaluate the generalization error

Notice that the formula for cv and test errors do not contain the
regularization term. They just measure how well the hypothesis
fits to the data.

For classification there is an alternative test set metric that might
be easier to interpret, the misclassification error. It is 1 if there is
an error and 0 if there isn’t. if all test examples are wrong (1) then
the mlscla551f1cat10n error is 1. If none is wrong then it is 0.
Misclassification error (0/1 misclassification error):

er(kek‘y, 53 - { \L \"(f)> O;/ 9= 9 - Qecror
O

o i* haby<os, T y=t S
) othenice.

High bias or high variance problem
Or in other words underfitting or overfitting.

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than
you were hoping. (J.,(#) or Jiest(0) is high.) Isit a bias
problem or a variance problem?

Bias (underfit):
= Skaa (D il be “'Ul‘}

I“,(e) N —31’%(5\
Variance (overfit):
= T l® wll \e low
_S“(é\ =D 3‘“—&.«(5)

co(0)
cross validation

Jirain(0)

(training error)

VWiesS

One method that you can use in order to identify if your
model suffers from overfitting or underfitting is to plot the
training set error and the cross validation set error versus
the hyperparameter of interest (d for linear regression) in
the same plot.

As dincreases the hypothesis can better fit to the data so the
training error would decrease. The CV error would be large
initially for small values of d since the hypothesis isn’t
flexible enough to fit well to the data it would decrease as d
increases but from a point on would start increase again
since if we have a very flexible hypothesis it would overfit
which means that the cost in the CV set would be large.

Large values for both means bias problem.
Large for CV but small for training set means great variance
problem.




Bias/variance as a function of the regularization parameter )\
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In order to select a good value for the regularization
constant A, you can use a similar plot of the training and CV
costs over the regularization constant A.

Notice that we use the regularized cost function to train the
model, but we use the unregularized cost function for the
plot so that we can compare it with the CV cost which is
unregularized too.

Learning curves

Now we plot the training and CV error with respect to the training examples. The training examples is a fixed number for a given
problem but for the sake of plotting these curves we evaluate the costs for smaller numbers of training examples in order to see
the effect of the training data size and gain insights about the bias or variance of our model.

z) =0 %
High bias ho(x) = 0o + 1z

v

J\K_\J Teul®

price

error

o N p
Qxr o Sxmia (8
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q

size

| /

M (training set size)

price

If a learning algorithm is suffering
from high bias, getting more
training data will not (by itself)
help much.

size

Characteristic of high bias situation is that both the
training and the CV errors are high and also similar to each
other.

In high bias cases more data don’t help. In these cases you
might try to add more features or additional hidden units
and recreating a learning curve. Now more data might
help.

ho(x) = g + 01 + - - - + 0100210
(and small L\) (\

A

High variance

]
g e &
] = x
cg?
_Stmts\
//- size
‘ M (training set size) 8
If a learning algorithm is suffering 3
from high variance, getting more
training data is likely to help.

size

The characteristic of high variance is that training error is
small and CV error is large. There is a big gap between
them.

In high variance situations more data might help (the
curves would eventually converge to a lower value)

has learned well from the data and generalizes well too.

In conclusion

Aslunderstand it if the training error and the cross validation error are at the same level and this level is low then our hypothesis

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict
housing prices. However, when you test your hypothesis in a new set of
houses, you find that it makes unacceptably large errors in its
prediction. What should you try next?

- Get more training examples — fixa, high worone
- Try smaller sets of features — Sxee high voiona
- Try getting additional features — %xa hgh bies

- Trydecreasing A = Fixes hgh Mas
- Tryincreasing A\ - §ixes \\.Sk Vorioata

- Try adding polynomial features (27, 3, z 22 ,etc) = fe high bias.




Machine learning system design
How to start working on a problem

Recommended approach
- - Start with a simple algorithm that you can implement quickly.
Implement it and test it on your cross-validation data.

- Plot learning curves to decide if more data, more features, etc.
are likely to help.

- Error analysis: Manually examine the examples (in cross
validation set) that your algorithm made errors on. See if you
spot any systematic trend in what type of examples it is
making errors on.

Error analysis

The process of manually examining the errors that the
model does on the cross validation set, to get some
insights on what you need to do to improve it.

You can use a numerical evaluation for example the CV
cost for testing various alterations and tuning.

For example, deciding what to do for building a spam classifier.

Building a spam classifier

Supervised learning. = = features of email. ¥ =spam (1) or not spam (0).
Features xz: Choose 100 words indicative of spam/not spam.

L:cs &\o.\, 5‘45 ,&'\snen‘\', o.:x&un,v\m,...
%js §1 ik wed | oprers

\/ (o]

o] Ondre

\ ha Mn
)( = | &Q&\ Re From: cheapsales@buystufffromme.com
3 To: ang@cs.stanford.edu
Q &'L,SCO“‘*' Subject: Buy now!

| L Deal of the week! Buy now!

Note: In practice, take most frequently occurring n words ( 10,000 to 50,000)
in training set, rather than manually pick 100 words.

Building a spam classifier
How to spend your time to make it have low error?
- Collect lots of data
- E.g. “honeypot” project.
- Develop sophisticated features
information (from email header).
- Develop sophisticated features for message body, e.g. should
“discount” and “discounts” be treated as the same word? How
about “deal” and “Dealer”? Features about punctuation?
- Develop sophisticated algorithm to detect misspellings (e.g.
mOrtgage, medlcine, w4tches.)

based on email routing

Error analysis

Error Analysis

mcv = 500 examples in cross validation set
Algorithm misclassifies 100 emails.
Manually examine the 100 errors, and categorize them based on:
—>(i) What type of email itis__ Phorma , ragiia, steok possumds,
- (i) What cues (features) you think would have helped the
algorithm classify them correctly.

Pharma: 2
Replica/fake: <
> Steal passwords: S3

Other: 2\

Choose to tackle the most important error cases

—> Deliberate misspellings: <
(mOrgage, medlcine, etc.)
- Unusual email routing: &
—= Unusual (spamming) punctuation: 72

Stemming is a technique used to consider similar words
as the same one.
The importance of numerical evaluation

Should discount/discounts/discounted/discounting be treated as the
same word?
Can use “stemming” software (E.g. “Porter stemmer”)
universe/university.
Error analysis may not be helpful for deciding if this is likely to improve
performance. Only solution is to try it and see if it works.
Need numerical evaluation (e.g., cross validation error) of algorithm’s
performance with and without stemming.
Without stemming: 54 esror With stemming: 3<A acror
Distinguish upper vs. lower case (Mom/mom): 3.2/

F1 Score
Skewed classes and Precision/Recall

Cancer classification example
Train logistic regression model hy(z). (y = 1if cancer, y = 0
otherwise)

Find that you goon test set.

(99% correct diagnoses)

Only 0.50% of patients have cancer.
L. \N es .
SRR ;\ru& osses " i £l

function y = predictCancerU
=y = 0; %ignore x!

return

Qrror

Skewed classes

The case in which we have much more examples from
one class than from the other class. In these cases the
cross validation error would not be a good metric for
the performance of the model. If the CV error in a
binary classification problem is 1% you might think it
is good, but if only 0.5% of the training and cv sets is of
one class, you could have an algorithm that just
predicts 0 all the time and does better than your 1%
error model.

In cases like these we need other metrics




Precision/Recall

N T
ﬁ'eué.up& postive

hagatiie = Recall

I

did we correctly detect as

Troa. postins

HFackud ()OS\‘HJ'.A -

y = 1 in presence of rare class that we want to detect
}\L Jo closs - Precision
(Of all patients where we predicted y = 1, what

fraction actually has cancer?)

“Toua. \( ot e

Trua gos + Foke (s

(Of all patients that actually have cancer, what fraction

having cancer?)

Teva fos\ﬂm

Troa (0& - 5

Toa AMeg

Precision = Positive Predictive Value = TP/ (TP + FP)
Recall = Sensitivity = TP / (TP + FN)

In the above example the algorithm that predicts
always 0, would have a recall of 0, so we would know
that it hasn’t learned from the data even though it has
a 0.5% error.

Trading off precision and recall
= Logistic regression: 0 < hy(z) <1 =
Predict 1if ho(z) > 08 4 04 03 €

Predict 0if ho(z) < QB8 &F oA o3
— Suppose we want to predict y = 1 (cancer)
only if very confident.
= ‘_1‘3\,, pression, lower t2call

Precision

- Suppose we want to avoid missing too many
cases of cancer (avoid false negatives).
- u‘ﬁ\" (ﬂ& P \ou-r el‘ws\\m.

—> precision

recall

true positives

ool pri

true

no. of actual positive
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Every classification algorithm exhibits a tradeoff
between precision and recall. If you want to increase
precision you have to reduce the false positives, which
means that you will make your model harder to output
a positive. This would mean though, that it would be
easier to predict negative which will increase the false
negatives.

If you want to predict 1 only if you are confident
enough, then you might choose to predict 1 only if
h(x)>0.7 for example instead of >0.5. Such a threshold

A -
verage \%

P‘_O e =0
=0 ol R=(

10 <\ :
Pradick 9=\ oA\ Al 4o

= Rtcwn &6,

= F-Swe :\ l

Recall . . : s
More generally: Predict 1 if‘hu(l') > thresholdl would give a high precision but alow recall.
There is a single metric that is used in order to evaluate
algorithms based on their precision and recall values.
Itis the F1 score.
F, Score (F score) F1 score
How to compare precision/recall numbers? It short of gives a greater weight to the low value either
this is recall or precision. If one of them is close to 0
Precision(P) Recall (R) Average / | F, Score then it would be close to 0 too.
~ Algorithm1 | 05 0.4 ' a5/ | 0448 <
- Algorithm 2 0.7 0.1 ) 0175 <« In practice you can try a range of different threshold
Algorithm 3 0.02 051 0.0392 < values and evaluate their F1 score on the CV set to pick

the one you want.

The reason for which the F1 score is important in problems with skewed classes, is that in these cases it is difficult to grade the
model based on the error rate. If the classes are not skewed and you have let’s say a 50/50 case, then if the error rate on the test
set is 1% you know the algorithm is good. Because if it always predicted 1 or 0 the error rate would be 50%. But if the classes
are skewed like in the cancer case, then you must use the F1 score.

Common approach for structuring a good prediction model
In general, a way to think of structuring a good prediction model is first to ensure that the input features have sufficient
information to predict the output accurately. A way to evaluate that is to show the features to a human expert on the field and
ask them if they can confidently predict the output based on these features. Then you must think about the bias and variance of
the model. First you must ensure that you have a low bias model by choosing one with many parameters and then ensure that
this model will have a low variance too, by collecting a huge amount of data, so that the model would not be able to overfit.
(We already saw in which cases we might need additional data, so this is just a clarification)




Designing a high accuracy learning system

E.g. Classify between confusable words.
{to, two, too}f /{then, than}
- For breakfastTate Tws  eggs.

Ly

This research paper from Banko and
Brill (2001) was very influential
(although these algorithms are not
currently used that much). Usually
o more data means better
performance. But this is true only in
some cases as we already saw. It is
true when

1. The features have sufficient

information for the output

+0ia

Algorithms g
- - Perceptron (Logistic regression) &
~ - Winnow

= - Memory-based

—» - Naive Bayes —y

Training set size (millions) 4‘

“It’s not who has the best algorithm that wins.
It’s who has the most data.”

2. The model has low bias
3. Then there is a meaning in trying
in having a lot of data

Ceiling analysis
Ceiling analysis

Variance between predictions in regression

Regularization

Intro

Each red line is a NN with different parameters. The
green line is the variance of these different NNs
with each other, the variance between multiple
predictions essentially. The smaller the variance
the closer you are to the training cloud (the
training manifold). This is an important take away
that can tell you how well you do. Because it is not
that easy to know how well your regressor does. So
you train multiple of them, and you check the
variance between them. If it is small, or smaller
than some other models then you might be good.

Notice that when using ReL.U the out of data domain
prediction is linear while if you use tanh or sigmoid
it is not linear. I think you just extend the last part
of the linear piecewise function in one case and the
sigmoid like one in the other.

Intuition

Price
Price

Size of house

o + 01 + Or22 «—M‘ $M

Suppose we penalize and make 03, 04 really small.

Size of house
0o + 012 + Op2*

m

> o Y | ¥
— min— E (ho(z) — D)2 +\0e0 ©; + 1000 By
0 2m —
=1

©,40 ©.%0

For an intuition of how regularization helps to address
overfitting, we can think of a 2d hypothesis where we
penalize 83 and 64, forcing them to have low values. This
means that their contribution to the hypothesis function
becomes small, leaving only 60 and 81 as important and this
results to a curve that looks like a quadratic one with a few
disturbances that fits well to the data.

We enforce parameters to become small by adding a big
scalar for these in the cost function. So in order to minimize
the cost function these parameters must be really small. (I
guess we use the squared parameters so that the sign of the
parameter makes no difference)




Regularization. It can be shown that if you use small values for the

parameters O of the hypothesis function, has the effect of
: : A ducing smoother (simpler) hypothesis functions. A way

(8) _ ,(1))2 2 pro g p y

(he(z'") — y'*) +® Z:l 0j to think of it is that by making all parameters small, if we

] | I= | have scaled feature values between 0 and 1, then the lower

order parameters would be more important. If we have

What if \ is set to an extremely large value (perhaps for too large h(x)=00+61x+02x?+...if x is 0.1 then x? is 0.01 which results

for our problem, say A = 1019)? in small contribution for 82 to h(x).

9\ ) Q_L ;Sl, G\r

©,40 ,0, %0

J(0) = 5=

& x

We regularize by adding an additional term in the cost
function. The constant A is called the regularization
parameter and controls the magnitude of the parameters.
L\e@} =8, Usually we don’t regularize 60.

Price

"ul&u&‘,*'l s}/‘:/‘o N eq'XD
W

Size of house

Mo + O+ O3 + 330 + D' v | Ultimately if all parameters become extremely small then

the hypothesis function would be equal to 80 which is a

constant value that we usually don’t regularize. So if we end

up with a constant h(x) it is an indication that the

parameters are too small and we have to choose them to be
a little larger.

TAR Essentially you minimize a function of that form. By controlling the magnitude of constant A you control which of these

two terms you think is more important. A actually controls the variance of your hypothesis. You select a tradeoff between how
well you want your hypothesis to fit to the training data (A term more important than B) or how small you want the hypothesis
parameters to be so that the hypothesis is not that flexible (B larger than A).

Some intuitions

This might be an intuition on why smaller weights
mean smoother functions and consequently less
overfitting chances.

By decreasing the magnitude of the coefficients
(regularizing) you decrease the size of the space
that the hypothesis function defines. Thus the
hypothesis function can’t overfit to data outside of
that space.

If your hypothesis can do everything from being a
straight line to wiggling in every direction like a
sine wave that can also go up and down, it's much
more likely to pick up and model random
perturbations in your data that isn't a result of the
underlying signal but the result of just lucky chance
in that data set

For given data within let’s say -2 to 2 range, the
small coefficient function has less variance while
the large coefficient ones, can take larger values so
they can overfit if there was data points with large
values.

Regularized linear regression



) . o THR W % The partial derivative for the regularized cost
Gradient descent r function of a linear regression problem is given by

Repeat { the formula inside the pink brackets.

m
= (i i)Y (%)
—= O := 6y — (1,17 Z (ho(a (')) —yD)a u' Doing algebra we end up with a more compact form
=1 — » = which is actually the same as the standard linear
P 2 0; :=0; —|a | ,17 Y (ho(z) — ,l/(i)).z'(j") . # (J:J regression with the differe:*ncg that ©j is multiplied
s - =l =l - i by a constant (1-aA/m) which is usually smaller than
—(1=%123,...,n) —=——=- |1 since a is small and m is large. So during
} I regularized gradient descent parameters 6 become
(2 g g p

smaller faster.

m

= - @7 For the normal equation method the new form is as
' » e 5 \ 0-aa ' shown. Notice that with regularization you avoid the
¢ M= non invertibility problem too. It can be shown that in
Normal equation . . .
] the regularized form since A>0 the matrix is always
()]s y invertible.
X . y = : Non-invertibility (optional/advanced).
. (J.(II.I))']' T U(m) Suppose m <n, é__
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Regularized logistic regression
Cost function: The formula for partial derivative of the cost function
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Norms
L0 norm
The number of components of a vector that are non zero

L1 norm

The sum of the absolute values of the components of the vector. In context of DL minimizing L1 norm of a vector is called sparse
coding, it makes the vector more sparse. It is a convex function so you can run gradient based optimization. It is differentiable.
Minimizing L1 norm implicitly minimizes LO norm (which is a non convex problem).

L2 norm
Sum of the squares of vector components, and the get the square root of this.



In Practice
All these are regularization techniques, which means they make the weights small.

Data normalization or Data Standardization
In the data preprocessing step, we normalize or standardize the data. Both operations have the target of putting all features on
the same scale. If the input data has four features [x1 x2 x3 x4] then these all x1s and all x2s etc. will lie within the same range.
e UK : Normalized data lie between 0 and 1
N ormga | |Ze Sta N d a rd WAS Standardized data have mean=0 and std=1 (do if xi follows a
g \ : ' normal distribution all xis will lie roughly between -1.5 and
+1.5 (within 3 stds)

Weight decay
Usually L2 norm of the weight matrix
hasti grodient descant For Our DaOrORETeT TS Deﬁned 1n the
eptimizer = torch, optia. SG0(sodel. parsseters(), lr=learning_rate, welght_decay=laabda_12} # builc-in 02 o
optimizer setup
Dropout

Only active during training mode (net.train() in pytorch). At each pass there is a probability for neurons to be dropped out (not
existing). So the network has to learn more robustly (I guess it forces the model to have some redundancy on neurons, so a
feature might be represented by more than one neurons so when one is shut off the other representing that feature might be
on??? and they learn to represent only the most important features )

At training a neuron has probability p of dropout.

At testing we multiply weights outgoing from the hidden neurons by 1-p.

So if it had a probability of 70% being off during training (so it was shut off 70% of the time), then it contributes for 30% of its
value on test.

You select to which layer the Dropout is applied.

class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes, p = dropout):
super(NeuralNet, self).__init__()
self.fcl = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(Chidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, num_classes)
self.dropout = nn.Dropout(p)

def forward(self, x):
out = F.relu(self.fcl(x))

out = F.relu(self.fc2(out))
out = self.dropout(self.fc3(out))
return out

Have in mind that if you use dropout of 20% then in order to keep the norm of the vector constant despite the 20% reduction of
components, you need to increase the magnitude of the other components by 1/(1-0.2)=1.25

Batch normalization
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739 good explanation and practical tips

https://blog.janestreet.com/12-regularization-and-batch-norm/ batch norm vs weight decay

normalize

scale and shift

Unlike the input layer, which requires all normalized values to have zero mean and unit variance, Batch Norm allows its values
to be shifted (to a different mean) and scaled (to a different variance). It does this by multiplying the normalized values by a
factor, gamma, and adding to it a factor, beta. Note that this is an element-wise multiply, not a matrix multiply.


https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://blog.janestreet.com/l2-regularization-and-batch-norm/

What makes this innovation ingenious is that these factors are not hyperparameters (ie. constants provided by the model
designer) but are trainable parameters that are learned by the network. In other words, each Batch Norm layer is able to
optimally find the best factors for itself, and can thus shift and scale the normalized values to get the best predictions.

Moving average of means and std

In addition, Batch Norm also keeps a running count of the Exponential Moving Average (EMA) of the mean and variance. During
training, it simply calculates this EMA but does not do anything with it. At the end of training, it simply saves this value as part
of the layer’s state, for use during the Inference phase.

In inference we have only one sample. So to normalize it we use the EMA mean and std stored in the model.

) : This is what batch norm does. These 4 parameters are all learnable during
Batch Normalization training. Operations 2 and 3 set a new std and mean for the data. This happens
L per batch. So in a layer with 4 neurons (4 hidden features x1, x2, x3, x4) and batch
| i L U Lo acivation TUnttien. size of 256, we normalize x1 using its 256 values (calculating its mean and std).

z = "'—‘@ same for the other features.

This process makes the weights not become imbalanced, some being vary large
meter,.g. : and some very small.

" Increases training speed.
20

X

2. Multipy n'ormalizedbutput’ by arbitrary> :

Batch norm Vs weight decay

. When used together with batch normalization in a convolutional neural net with
A ; g typical architectures, an L2 objective penalty no longer has its original

(z*9) @ regularizing effect. Instead it becomes essentially equivalent to an adaptive

adjustment of the learning rate!

'3‘.'A arbitrary parameter, b, to;resulting
product:

So you either use one or the other I guess

class LeNet5_norm(nn.Hodule): In pytorch you define where you want the batch

e norm to take place. After which layers.

super(Lelet5 norm, self). dinit_ ()

self.convolutional_layer = nn.Sequential(
n.Conv2d(in_channels=1, out channels=6, kernel size=5, stride=1),
nn.RelLU(),

=

nn.MaxPool2d(kernel size=2, stride=2, padding=8),
nn.BatchNorm2d{6),

nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1),
nn.RelLU(),
nn.MaxPool2d(kernel size=2, stride=2, padding=8),
nn.Conv2d(in_channels=16, out_channels=128, kernel_size=5, stride=1),
nn.RelLU()

)

self.linear layer = nn.Sequential(
nn.Linear(in_features=128, out features=84),
nn.RelLU(),

n.BatchNormld(84),

nn.Linear(in_features=84, out_features=10)

=

Tips

We use Keras callbacks to implement:
e Learning rate decay if the validation loss does not improve for 5 continues epochs.
e Early stopping if the validation loss does not improve for 10 continues epochs.
e Save the weights only if there is improvement in validation loss.



3.4. Implementation

1 Our implementation for ImageNet follows the practice

n |21, 41). The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224 %224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
pormalization (BN) [16] right after each convolution and
before activation, Tollowing [16]."We imtialize the weights
as i [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60 x 10* iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [ 14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

Many of the tricks used in DL in this paragraph.

e Ifyou change the batch size you need to find a different set of hyperparameters for your model too.

e Ahigher batch size often has a similar effect to lowering learning rate.

e After some epochs the cost starts increasing and you have to decrease the learning rate to overcome this region.

e Dropout?
e  Batch normalization?

o Example of different data distribution between the evaluation and the training set: images in evaluation set were all unique,
while training set could contain same images (but with different captions). I added more training data along the way to
overcome this and make the error rate decrease further.

e Then @_arohan_who had been suggesting great ideas along the way mentioned that I should try to train in full precision,

and update betal momentum (to overcome the cost plateau)

Tricks for efficient backpropagation
Backprop in Practice 'm

# Use ReLU non-linearities (tanh and logistic are falling out of favor)

# Initialize the weights properly

# Use cross-entropy loss for classification

# Use Stochastic Gradient Descent on minibatches

@ Shuffle the training samples

# Normalize the input variables (zero mean, unit variance)

# Schedule to decrease the learning rate

# Use a bit of L1 or L2 regularization on the weights (or a combination)
P But it's best to turn it on after a couple of epochs

# Use “dropout” for regularization
P Hinton et al 2012 http://arxiv.org/abs/1207.0580

@ Lots more in [LeCun et al. “Efficient Backprop” 1998]

@ Lots, lots more in recent papers.

L1 and L2 regularization. We add a term to the cost with the effect
of making the weights smaller at every iteration.

Dropout

In pytorch dropout is implemented as a layer. It is applied to the
output of a layer, and it randomly makes some of its activations 0.
This forces the network to not distribute the information of some

Weight initialization

The concept is that the weights are initialized randomly
in a way that if a unit has many inputs the weights are
smaller than if it had few inputs. Usually the inputs are
normalized (0 mean unit variance). So the weighted sum
increases by the sqrt(number of input units). We want
the weighted sum to be fairly the same size both when
there are many and few inputs and we want it to be fairly
in the same size with each inputs (0 mean unit variance).
So the weights become smaller by a factor of
1/sqrt(nOfUnits).

This is built into pytorch. There are a few options (He,
Xavier, LeCun) but they are all based to the same
concept.

e He initialization works better for layers with

ReLu activation.
e Xavierinitialization works better for layers with
sigmoid activation.




patterns in many nodes and become more robust. It has been | There are many variations of SGD. the learning rate can
shown that dropout can decrease the generalization error in many | be a scalar, or a diagonal matrix, or a full matrix. It can be
cases. But it might not be always necessary. constant, or usually it is decreased according to a
schedule (pytorch has many built in schedules). ADAMS
is a kind of SVG where the learning rate is a diagonal
matrix the elements of which change in every step. In the
optim package of pytorch there are a lot of them to
choose from.

Datasets

Key Results

Linear Classifier Detection
(Fixed Features) (Fine-tuned)

ImageNet Places iNaturalist VOC07+12 COCO

Supervised
Prior self-supervised
SwWAV 75.3(-1.2)

CRISP DM
CRoss Industry Standard Process for Data Mining (CRISP-DM)

The CRoss Industry Standard Process for Data Mining
(CRISP-DM) is a process model that serves as the base for a
data science process. It has six sequential phases:

Underetinding 1. Business understanding - What does the business

N need?

2. Dataunderstanding - What data do we have / need? Is

it clean?
AV

3. Data preparation - How do we organize the data for

modeling?
Modling 4. Modeling - What modeling techniques should we
apply?
/ 5. Evaluation - Which model best meets the business
objectives?

6. Deployment - How do stakeholders access the results?

7. Published in 1999 to standardize data mining
processes across industries, it has since become the
most common methodology for data mining, analytics,
and data science projects.

Data science teams that combine a loose implementation of
CRISP-DM with overarching team-based agile project
management approaches will likely see the best results.

Active learning

Learning rate schedule
You choose one schedule like cosine annealing.

Pseudo labeling

Test-time augmentation

Model size, batch size and GPU



Could not go with deeper model than ResNet-34 because it wouldn't fir on a single GPU with the large batch size input

Some Methods overview

Evaluating 5  different
methods or models.

Method

1. 46.57% Feature Embedding from unsupervised learning with Barlow Twins
a. ResNet-50, #epoch=1000, batch size=1024, Ir=0.5, 8192-8192-8192 projector

2. 52.38% Balanced Pseudo-label Iteration
a. Use the current best model to predict probability of classes of each sample

Pick top-k classes for each sample; we have k*512000 pairs of potential pseudo samples

Pick top-p samples for each class, wehave p*800 pairs of pseudo labels

Finetune the model with pseudo labels+train dataset, then finetune only on train dataset

. We run for for four iterations, keep k=10, p=200,300,400,500.

3. 54.46% Finetune from semi-supervised learning with FixMatch

56.07% Finetune only-on train dataset and additional data with FixMatch

5. Test-time Augmentation (TTA) Multi-scale Inference
a. Use average of prediction from resized image (96, 96) (144, 144) (192, 192)
b. 56.02% model.pth
c. 57.54% model_extra.pth

®Qao T
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Saliency analysis

Supervised Training Results Barlow Twins Learned Features
Supervised Traming Loss Saliency Analysis

Features
Extracted

Saliency Map

U.Ozbulak,"Pytorch cnn visualizations,
i 2019

Confusion matrix

Predicted Labels Distribution

Plot 1.1 Confusion Matrix of Train Plot 1.2 Confusion Matrix of Val Plot 2: Train vs Val
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What we learned what we didn’t

Features Learnt

Visualization of Network

what did our model learn?

N
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e Shape of wings
Texture of wings

Encoder of Comatch

. § Layem‘ FEGEENDNEESRTEECNRETSERRE
e Background flowers | 1 BEENINTENSNCEENEENAEER B
o .. \
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Visualization of feature
maps

Performance Analysis

what did our model not learn?

Type 1: Under-Classified
Challenging characters (too
e Viewpoint variation
e Scale variation
e Intra-class variation

NYU

Industry tips

THE DATA SCIENCE
HIERARCHY OF NEEDS

Al,
DEEP
LEARNING

A/B TESTING,
EXPERIMENTATION,

LEARN/OPTIMIZE
SIMPLE ML ALGORITHMS

ANALYTICS, METRICS,

AGGREGATE/LABEL SEGMENTS, AGGREGATES,
FEATURES, TRAINING DATA
EXPLORE/TRANSFORM CLEANING, ANOMALY DETECTION, PREP
RELIABLE DATA FLOW, INFRASTRUCTURE,
MOVE/STORE PIPELINES, ETL, STRUCTURED AND

UNSTRUCTURED DATA STORAGE

COLLECT

Airbnb




<(:0(?c—‘> !mv‘!r-.f§> Airbnb/Booking.com System Design

Hotels DB MYSQL Cluster

UI / APP for Hotel
Hotel Manager Service Master || Slave 1 [ Slave 2

i

Search
Kafka Consumer

Search Elastic Search
» i-i <
UL 7 APP 4_.l- Service ' Cluster
for Customers
Search
+
Booking Booking
Service

Payment
Service

Notification |
Kafka Consumer %
K
A
= |
K
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Archival
Kafka Consumer

Tesla

FULL STACK Al

Shadow mode / telemetry / statistics

Inference @ cloud Inference @ FSD Computer

Evaluation

PyTorch distributed training

Data GPU cluster Dojo cluster

environment tags

<— crosswalks

rd
4

road markings : road signs
static objects

~1000px*1000px images running on ResNet-50 like models
(2019)

HydraNets (shared backbone multiple heads)

They can’t afford to have a NN for each individual task because the number of tasks are too many (~100) so they have to amortize
some of the computation and put some of the tasks on shared backbones. They call these networks hydra nets (shared backbone

with multiple heads)




O SINGLE VIEW TASKS

(3,960, 1280) input images

e “ResNet-50 like” dilated backbones

e FPN / DeepLabV3 / UNet -like heads

e ~15 tasks => “prototypes framework”

T T

objects traffic lights markings

shared backbone

DeepLabVV3 is a model architecture for semantic
segmentation

UNet is a model architecture for semantic
segmentation

FPN is a model architecture for object detection

There are single view tasks and across camera tasks. In the former the NN has to predict from a single image. In the later it has
to process the scene from multiple cameras (for example estimating depth). Depth of each individual pixel. You have to borrow
features from other hydra nets. So you have one hydra net for each camera. If you need more than one camera inputs for a
specific task, you have to combine the output features of multiple hydra nets and add an additional layer of processing on top of

them (optionally recurrent)

Across camera tasks

Predict the depth
(depth network)

road layout

RNNs on videos

Predict the road layout

(layout network)

The input is from 3 cameras (out of the 8 a tesla car
has). From these 3 they predict the road layout. Now
the networks predictions are not in image space but
in top down space. So the stitching up of the 3
cameras happens inside of this RNN (while the pave
ways edges where stitched up from individual
images predictions “manually” in c++ code)

Deep Understanding Tesla FSD (5 parts)

https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57

Code



https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57

@ Andrej Karpathy liked Hugginface

; Ankur Goyal @ankrgyl - 17h
Exciting news 4

Document Question Answering is now a first class citizen in @huggingface
transformers! With just 3 lines of code, you can process any document like so:

INVOICE

Q a7 T 201 ¥ 1475

>

Benchmarks

BIG-bench and BIG-bench Lite (2021)

The Beyond the Imitation Game Benchmark (BIG-bench) is a collaborative benchmark intended to probe large language models
and extrapolate their future capabilities. The more than 200 tasks included in BIG-bench are summarized by keyword here, and
by task name here

BIG-bench Lite (BBL) is a small subset of 24 diverse JSON tasks from BIG-bench. It is designed to provide a canonical measure
of model performance, while being far cheaper to evaluate than the full set of more than 200 programmatic and JSON tasks in
BIG-bench.

https: //github.com/google/BIG-bench

Vision
ImageNet

Speech
LibriSpeech

Text (NLP)
GLUE benchmark suite


https://github.com/google/BIG-bench
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