
The Essence of Linear Algebra 

Introduction 
Most important concepts of linear algebra  

https://www.youtube.com/watch?v=YrHlHbtiSM0&list=PLUl4u3cNGP61iQEFiWLE21EJCxwmWvvek&index=1  

 

 

 

Linearity means Homogeneity and Additivity  

A system is linear if it is homogeneous and additive 

 

Suppose that you don’t know the function f and you 

try to extract its behaviour by inputting values to it 

and measuring the output.  

 

A function with the graph of a line, is both 

homogeneous and additive. Every function that 

exhibits these two properties can be considered a 

linear function. These functions are of degree one in 

terms of their input x (x1).  

 

In this case both the input and the output are 

functions of time x(t) and y(t) but the concept is the 

same. You can think of the input as if you input just a 

number (the value of the input at a specific time) and 

you examine the output number and repeat. From 

the relationship you can extract the behaviour of the 

function.  

 

Scaling and adding  

It doesn’t matter if you think of vectors as arrows in space that happen to have a certain numerical representation or if you  think 

of them as a list of numbers that happen to have a nice geometric interpretation. The usefulness of linear algebra has less to do 

with one of those definitions than it has with the ability to translate back and forth between them. (We will see in detail, that a 

vector can be anything where there is a sensible notion of adding two of them together and multiplying them by a number) 

https://www.youtube.com/watch?v=YrHlHbtiSM0&list=PLUl4u3cNGP61iQEFiWLE21EJCxwmWvvek&index=1


 

Multiplication of a vector by a number scales the vector, thus the numbers in linear algebra can be thought of as scalars (things 

that cause vectors to scale).  

 

 

You can think of a vector’s coordinates as scalars of the basis vectors. In this sense each vector 

is an addition of scaled basis vectors.  

 

Span and basis 

 

Scaling two vectors and adding them together is a called a 

linear combination of these vectors. What does this has to do 

with lines? One way to think of it is that if you keep one scalar 

fixed and let the other change freely, the resulting vector tip 

will lie in a line 

 

The span of most pairs of 2d vectors is ALL vectors of 2d space. 

But if the two vectors are aligned then their span is all vectors 

whose tip sits in this line.  

 

The span of two vectors is a way of asking what are all the 

possible vectors you can reach using only these two 

fundamental operations, vector addition and scalar 

multiplication. 

  



 

The span of two 3dimensional vectors is a 2d plane crossing the origin of the 

coordinate system. 

 

The span of 3 3d vectors is the whole 3d space except from the case where two of the 

three are aligned or if one lies in the span of the other two, in which case the span is a 

2d plane. In this case you can remove the third vector without affecting the span. In 

this case we say that the two vectors (from which you removed one) are linearly 

dependent which means that this vector can be expressed as a linear combination 

of the others (since it lies in the span of the others). On the other hand if each vector 

adds another dimension to the span there said to be linearly independent.  

 

Linearly dependent                           linearly independent 

            

 

Basis of a vector space 

The basis of a vector space is a set of linearly independent vectors that span the full space 

 

Linear transformation  
A linear transformation is a function that takes in vectors and spits out vectors. It can be represented visually by smooshing 

around space in such a way that grid lines remain parallel and evenly spaced and the origin remains fixed (if not evenly spaced 

the diagonals would not remain straight lines). 

 

We can think of each point in a space as the tip of a vector. Then 

we draw on top (the cyan lines) the transformed vector (its 

coordinates) where it lands when it passes through a 

transformation (a function). 

 

In a linear transformation, lines must remain lines and origin 

must remain fixed. Notice that diagonal lines too must remain 

straight lines. Or equivalently: Grid lines must be kept 

parallel and evenly spaced and the origin fixed. 

 

We have space with its basis vectors and a vector v [-1, 2]. The vector v can be expressed as a linear combination of its space’s 

basis vectors . We apply a linear transformation to the space and watch where the the v vector and the basis 

vectors land. The fact that the grid lines are kept parallel and evenly spaced has an important consequence. The vector 

v started as a certain linear combination of the basis vectors and ended up as the same linear combination of the 

transformed basis vectors. This means that you can deduce where every vector lands based solely on where the basis vectors 

land.  

  



  



How would you describe a linear transformation numerically? What formula would you use so that the coordinates of each 

vector are transformed to the coordinates of the output vector? It is enough to know where the basis vectors land. That is enough 

to completely describe the transformation.  

 

We can see that the x basis vector [i] lands in position [1,-2] (in 

terms of the original space) after the transformation and the y 

basis vector [j] lands in position [3,0].  

 

 

 

Knowing the linear combination that gives the vector v we can 

numerically calculate the vector by addition. Notice that the 

resulting vector coordinates [5 2] are expressed in relation to 

the original basis vectors. The same vector has coordinates [-1 

2] in relation to the new basis vectors which is actually the 

same linear combination of the transformed basis vectors. 

 

So in general terms, a vector with coordinates [x y] would 

land on x times where the [i] vector lands plus y times the 

vector of where the [j] lands. 

 

This formula can be represented by a vector-matrix 

multiplication. 

 

 

This two by two matrix describes a two dimensional linear 

transformation and is composed of two columns, one for each 

basis vector (space dimension) where the columns describe 

where the basis vectors of the original space land if this 

transformation is applied.  

 

If you are given any vector in this space you can easily deduce 

where it would land by multiplying its x coordinate with 

transformed [i] and y coordinate with transformed [j] and add. 

This corresponds to the idea of adding the new transformed 

basis vectors. This formula is equivalent of multiplying the 

vector with the matrix.  

If you rotate -90 degrees around z then i[1,0] goes to [0,1] and j[0,1] goes to [-1,0]. So the transformation matrix would be: 

 

If the transformed basis vectors are linearly dependent (one is a scaled version of the other) then the linear transformation 

squeezes all of 2d space onto the line where these two vectors sit (the one dimensional span of these linearly dependent vectors).  



 

 

Every time you see a matrix you can interpret it as a certain transformation of space. 

 

Orthonormal transformations 
The word "orthonormal" typically describes a set of vectors which are all unit length and orthogonal. (Orthogonal means that 

two things are 90 degrees from each other. Orthonormal means they are orthogonal and they have “Unit Length” or length 1.) 

 

 

They are linear transformations that leave all of the basis 

vectors perpendicular to each other and still with unit lengths.  

 

We often think of them as the rotation transformations. They 

correspond to rigid body motion (no stretching, squishing or 

morphing of the space) 

 

Since any vectors keep the same length and angle in between 

them before and after the transformation, their dot product 

remains the same. 

 

 

Orthogonal matrices 

Orthogonal matrices are the best to calculate with. They don’t change the length of things, they don’t result in blow up, they don’t 

transform anything to 0. You can multiply a lot of them and you would still have an orthogonal matrix as a result. 

 

Orthogonal matrices are square matrices that have 

orthonormal columns. This means that the dot 

product of any two columns is 0. Because the dot 

product of a vector with itself is 1, QTQ and QQT is 

the identity matrix. QTQ=I so QT=Q-1 

 

All columns are orthonormal with each other, 

which means that they are linearly independent 

with each other. So they each column is a unit 

vector (that’s why they are called orthonormal).  

 

The eigenvectors of an orthogonal matrix are all 

orthogonal to each other. This is another way of 

saying that the transformation is defined only by 

rotations where the axis of rations are the 



 

eigenvectors, which by itself defines a rigid body 

motion.  

 

Rotations are orthogonal matrices.  

 

BECAUSE ORTHOGONAL MATRICES HAVE THESE 

NICE PROPERTIES WE WANT TO DECOMPOSE 

ANY NON orthogonal matrix (with independent 

columns but not orthogonal) to an orthogonal and 

a triangular one. A=QR  

 

 

Have in mind that least squares method can be represented 

with matrix vector multiplication where we actually use 

A=QR and the Q orthogonal matrix. Actually it is one of the 

most common applications of linear algebra.  

 

 

Composition of Transformations 

 

If you apply two linear transformations one after the other (for 

example rotation by 90 degrees first and a shear 

transformation afterwards) the resulting transformation is a 

new one and is called a composition of the other two. Since 

applying a transformation to a vector can be numerically 

represented with multiplying it by a matrix, the composition 

can be represented numerically with a matrix-matrix 

multiplication. Whenever you see such a multiplication it can 

be graphically represented as two transformations one after 

the other.  



  

This stems from function notation where we write variables on 

the right so when you read a function composition you read it 

right to left 

 

Notice that if you reverse the order of transformations the 

resulting one will be different. So in its numerical 

representation which is matrix multiplication order is 

important. 

 Matrix multiplication is not 

cumulative 

 

So, if transformations are applied in the same order give the 

same result, matrix multiplication is associative since in both 

cases all you do is apply all the transformations right to left.  

 

 

The determinant 
A linear transformation changes any area within its space by a certain factor. This scaling factor is called the determinant of the 

linear transformation. It has a sign plus or minus depending on the orientation of the transformed area. In more general terms, 

the determinant of a matrix shows how much the signed unit object changes after applying the transformation described by 

the matrix. If the space is 2d the unit object is an area, if it is a 3d space then it is a volume.   

 

If you have a matrix you can think of the determinant of that matrix as the area formed between two vectors where each vector 

is a column of the matrix. But when the columns of a matrix represent vectors, the matrix represents a linear transformation 

where each column is a transformed basis vector. The basis vectors form the unit object. The initial unit object with an area of 

size one has been transformed to a new unit object with a new area the size of which is the determinant value. Thinking in terms 

of unit objects, we can say that the determinant is the factor by which the initial unit object changed. Since any object can be 

expressed as a sum of unit objects the determinant is the factor by which the volume of any object changes.   

 

  

Any shape that is not a grid cell can be approximated well 

enough if you use small enough grid cells, so its change in size 

can be approximated by the change in size of the grid cells. 

 

The determinant of a transformation is zero if it squishes all 

space onto a line or a point in case of 2d space, or onto a 

2dplane, line or point in case of 3d space. In general if the 

determinant of a transformation is 0, it means that this 

transformation squishes space into a smaller dimension 

(3d to 2d or 1d or 0d). This happens when the transformed 

basis vectors (the columns of the matrix) become linearly 

dependent.  

(A singular matrix refers to a matrix whose determinant is 

zero. Furthermore, such a matrix has no inverse.) 

 



 

 

The determinant can be a negative number. This has to do 

with orientation. If a transformation flips space over (inverts 

the orientation of space) then the area is represented with a 

negative number.  

 

    

 

In 3d space the determinant of a 3*3 matrix (each column is the coordinates of a vector) shows the factor by which a volume 

changes if the linear transformation represented by this matrix is applied. In 3d space you can determine if the space orientation 

has been inverted by the right hand rule. If it makes sense to represent the orientation with your left hand instead, it means that 

the space has been inverted (bring the in of a 3d object, out) 

 

The numerical formula for computing the determinant comes from computing the area of the transformed unit object. For a 

linear transformation of a 2d space which can be represented numerically by a 2*2 matrix the determinant is ad-bc. 

 

 

 

 

Also  

 

 



 

Have in mind this key idea about determinants. All shapes 

within the initial space are scaled by the same amount (that 

amount is the determinant of the transformation) 

 

 

Inverse matrix 
Usefulness of linear algebra  

● Describing the manipulation of space (useful for computer graphics and robotics) 

● It helps solve systems of linear equations (useful for a broad range of technical areas) 

 

 

 

 

A linear system of equations: The only thing that happens to a variable is 

that it is scaled by a constant and the only thing that happens to those 

scaled variables is that they are added to each other. Any such system can 

be represented by a vector-matrix multiplication and as such it can be 

thought of as a linear transformation of a space. (Notice that this chapter 

only mentions systems which have the same number of equations and 

unknowns) 

 

You know A which is the linear transformation applied, you know the 

transformed vector, so what you have to find in this case is the inverse 

transformation that transforms the transformed vector back to the 

original one. The inverse transformation is represented by a matrix A-1 

which is the inverse matrix of A.  

 

Applying two transformations one after the other is numerically 

represented by matrix multiplication so A*A-1 results to a transformation 

that does nothing and is called the Identity transformation.  

 

If you know the inverse, you multiply both terms of the equation with it 

and you end up with the solution which is applying the inverse 

transformation to v in order to get x.  

 

It is important to separate two cases: 

● The determinant of A is non zero 

A matrix A-1 exists with property that when you do A and then you do A-1, it’s the same as doing nothing. 

● The Determinant is zero 

 



 

 

 

Determinant is zero 

 

If the determinant is zero then there is no inverse transformation which means 

that there is no solution to that system of linear equations (except if the 

transformed vector v lies along the line).  

 

There is no transformation (no function) that can be applied to a line to 

transform it to a plane. This is not something that a function can do. If there was 

such a function, it would mean that it transforms an individual 1d vector into a 

line of vectors in the 2d space (the slightly larger 1d vector would be 

transformed to another line right next to the previous one and so on, so that all 

1d vectors are transformed to infinite number of lines that form a 2d space). 

This means that all the vectors that lie in this line of the original space, are 

transformed to a single vector (a point) in the transformed space (which is a 

line). A function by definition maps a single input to a single output. So there is 

no function that can map a single vector to the infinite vectors that form a line. 

Although the opposite can be done by a function. It maps many inputs to the 

same output. This is the original linear transformation. 

 

Notice that a solution to the system could still exist but this is only in the case 

the transformed vector v lies within the transformed space (along the line in 

this case), in which case the solution is all vectors that belong to a specific line 

in the original space. 

If the vector v lies outside of the line, it lies outside of the space which was 

defined after the transformation. Thus it can’t be a result of that transformation. 

Every vector that was lying inside the original space, would lie after the 

transformation inside the transformed space which is the line. If instead the 

transformed vector lives in the line then there could be a vector x that when the 

linear transformation is applied to it, it ends up in v. (in other words if the vector 

v lives in the column space then a solution to the equation exists). Actually there 

are a lot of vectors that land on v. A line of vectors, which is composed of all 

vectors the tip of whom lies in a specific line, are the solution to this equation.  

 

Conditioning and stability 

https://www.youtube.com/watch?v=BVM3NAt6QoM  

Conditioning shows how error is magnified in computational problems.  

 

In computational (numerical) methods you approximate the 

exact solution. The conditioning of the problem can tell you if 

your solution is a good approximation or not. 

 

 

https://www.youtube.com/watch?v=BVM3NAt6QoM


Matrix condition number 

 

If the condition number is not too much larger than 

1, the matrix is well-conditioned, which means that its 

inverse can be computed with good accuracy (with a 

numerical method).  

 

The condition number of a matrix n by n is calculated 

by multiplying the norm of A by the norm of A-1. The 

norm (of all rows of the matrix) is the largest sum of 

all rows (you sum each row. The largest sum is the 

norm of A). you can think of this expression like this. A 

matrix applies a transformation to a space. Some parts 

of the space are expanded more than others. The ratio 

of the maximum expansion with the minimum 

expansion is the condition number. 

 

  

 

Error magnification  

 

You can calculate how good approximation is a 

solution. You calculate the magnification error of 

the solution. If it is small, then it means that your 

approximation happened to be a good one.  

 

The condition number bounds the error 

magnification (as it is called). The error 

magnification of any algorithm will be smaller 

than the condition number of the matrix. The 

condition number kind of shows the worst-case 

scenario. 

 

Have in mind the forward error and the backward 

error. Fwd is the (relative) difference between the 

approximated x you found and the exact one. The 

backward error is the (relative) difference 

between the b (the result of the exact x) and the 

Ax1 (the b you calculate with the approximated 

solution) 

 

This is an important take away 

In an ill conditioned problem, a small residual doesn’t necessarily mean that you found a good solution to the problem . In an ill 

conditioned Ax=b problem, the x you numerically approximated might be very different from the exact one, but they can both 

result on almost the same y.  

 

 



Transpose matrix 

 

ATA is square, symmetric and nonnegative definite (its 

eigenvalues are non negative) 

 

 

Rank, Column space and Null space or kernel 
Rank is the number of dimensions of the output space of a transformation. When the result of a linear transformation is a line 

(which has one dimension) we say that the transformation has a rank of one. If the space is transformed to a 2d space we say 

that it has a rank of 2. The columns of a matrix are the coordinates of the transformed basis vectors. The span of those basis 

vectors gives you all the possible outputs of the transformation and is called column space. In these terms, the rank is the 

number of dimensions of the column space of a matrix. If the rank is the highest it can be, in other words if it is the same 

with the number of columns of a matrix, we say that the matrix is full rank and the linear transformation that it describes 

transforms a space into another space of the same number of dimensions. Notice that the zero vector will always be included 

in the column space of any matrix, since it lies in the origin and linear transformations must keep the origin fixed in space (the 

origin is the lowest possible result of a transformation so the origin is always part of the result).  

In a full rank linear transformation the only vector that ends up in the origin is the zero vector . In an one rank 

transformation of a 2d space (which is represented by a 2*2 matrix) there is a line in the original 2d space all the vectors of 

which land in the origin after the transformation. If a 3d transformation squishes space into 2 dimensions, a line exist in the 3d 

space the vectors of which (a line of vectors) land in the origin. If a 3d transformation squishes space into one dimension, a 2d 

plane exists in the original space all the vectors of which land on the origin of the transformed space. This set of vectors that 

land on the origin after a linear transformation is called the null space or the kernel of the matrix. It is the space of all vectors 

that become null.  

   

The kernel of a 2d linear transformation with rank 

one is a line (the yellow line). The transformed 

space is a line too (the cyan line). 

 

 

In case of a system of linear equations, if the result 

vector is the zero vector then the null space is all 

the possible solutions to the equation. 

 

Have in mind these terms for how to numerically calculate the solutions to systems of linear equations: 

● Gaussian elimination 

● Row echelon form  

 

 

Non square matrices 
Non square matrices describe transformations between dimensions.  



 

  

A 3 by 2 matrix has the geometric interpretation of 

transforming a 2d space to a 3d space. Notice that a 3*2 matrix 

is a full rank matrix which means that it transforms space into 

a space of same number of dimensions (but as part of a space 

with one more dimension). It has two columns which means 

that the output space is a 2d plane and the transformed basis 

vectors have 3 coordinates which means that they lie in a 3d 

space. But the vectors that are transformed with a 3*2 matrix 

will always lie in the same 2d plane. 

 

Since each column show the where the basis vector of the 

original space lands (the transformed basis vector), the 

number of columns show the number of basis vectors so the 

number of dimensions of the original space. 

 

The number of rows show the number of coordinates of the 

basis vectors in the transformed output space.  

  

 

You can transform a 2d space onto a 1d space (with a 1*2 

matrix). It takes in vectors and outputs numbers. When space 

is squished onto a line it is difficult to think of grid lines that 

remain at equal distance. A way to visualize linearity in this 

case is to think of a line of evenly spaced dots that would 

remain evenly spaced as they are mapped onto the line.  

 

Since the transformed space is a line each basis vector would 

be represented by a single number.  

 

Notice that a transformation [2 1] is different from another 

let’s say [2 -1]. it transforms the space in a different way so 

each vector lands on different numbers in each case.  

 

Dot product 
The dot product is a useful geometric tool for understanding projections and determining if two vectors are in the same or 

opposing direction or perpendicular to each other.  

 

The dot product of two vectors can be geometrically 

represented by finding the projection of one vector onto the 

other and multiplying the projected length with the vector. The 

result would be the same no matter which vector you select to 

project. 

 

Vertical vectors -> dot product is 0 

 

Vectors with opposing direction -> dot product is negative 

 



 

Order doesn’t matter 

 

Why the formula of dot product has anything to do with projections? 

When you want to see where a vector [4 3] lands after a [1 -2] transformation ([1 2] is a matrix) you can think that [4 3] is 4i+3j 

and since the result of a linear transformation would be the same linear combination of the transformed basis vectors 4i’+3j’ 

you just have to do 4*1+3*-2=-2. This is the number where the 2d vector will land. Numerically this formula is a matrix vector 

multiplication.  But if you write the [1 2] matrix as a vector then the dot product formula of the two vectors [1 2] and [4 3] gives 

the same result as with the equivalent matrix vector multiplication. So it seems that there is some kind of association between 

linear transformations that map 2d spaces to lines (represented by a 1*2 matrix) and vectors of size two themselves.  

 

Imagine that you place a number line inside a 2d space so that it passes from the 

origin and forms an angle with the x axis of the 2d space. You can draw a vector 

u, which has the same length with the unit vector i of the 2d space but it lies in 

the same direction with the number line. We mark the number one of the 

number line in the length of the u. Now, if we take some random 2d vectors we 

can just project them onto this number line. By definition they are transformed 

to numbers. What we have done actually, is that we have defined a function that 

takes 2d vectors and outputs numbers and this function is linear since it keeps 

the dots (tips of vectors) evenly spaced in the output space (the line). So this 

projection is actually a linear transformation from the 2d plane to this specific 

line. Consequently we can find a 1*2 matrix that describes this transformation.   

 

To do so we have to find where the i and j basis vectors of the 2d plane land on 

the line. They land on their projections  on the u vector. But since the u and i 

vectors are both unit vectors (of length one) the projection of i on u is of the same 

length with the projection of u to i. The projection of u to i is the x coordinate of 

u (ux). Respectively the projection of j in u is of length (uy). So the basis vectors 

land on ux and uy which are numbers of the number line.  This way we have 

found the 1*2 matrix that describes this linear transformation. It is the [ux uy] 

matrix. 

 

 

 

This means that when you want to transform a vector to this line you multiply 

its coordinates with ux and uy (the u matrix) and add them together. But this 

formula is identical with the formula of the dot product between the vector and 

the u vector.  

 

Consequently, taking the dot product of a vector with a unit vector can be 

interpreted as projecting the vector onto the span of this unit vector and taking 

the projection’s length (since the length of the unit vector is one and multiplying 

a number by one is the same number, the dot product is the length of the 

projection) 

The dot product with a non unit vector (following the same logic) is multiplying 

the projections length with the length of the non unit vector (which is a number 

times the unit vector) 

 

Duality  



 In general a 2d linear transformation to 1d is fundamentally related with a 2d 

vector. This is an example of something in math that is called “duality”, when you 

have a natural but surprising correspondence between two things. 

● The dual of a vector is the linear transformation that it encodes 

● The dual of a linear transformation from some space to one dimension (a 

line) is a certain vector in the original space. 

This means that we can think of a vector not only as an arrow in space but 

as a certain transformation that transforms its space to a line. It is as if the 

vector is a conceptual shorthand for a certain transformation 

 

Duality applies to transformations from a space of any number of dimensions to a space of one dimension 

 

Cross product 
Note, in all the computations here, I list the coordinates of the vectors as columns of a matrix, but many textbooks put them in 

the rows of a matrix instead.  It makes no difference for the result, since the determinant is unchanged after a transpose, but 

given how I've framed most of this series I think it is more intuitive to go with a column-centric approach. 

 

A 2d cross product (of two 2d vectors) is the area between the two vectors with a s=plus or minus sign depending on the 

orientation. 

 

The cross product can take negative values too depending on orientation . In the cross 

product v*w,  if v (the first vector) is on the right of w (the second vector) the result is 

positive.  

 

 

 

The cross product of two vectors is the determinant of a matrix whose columns are the 

vectors coordinates. That is because that matrix corresponds to a linear transformation 

that transforms the perpendicular basis vectors i and j of the original space to the v and 

w vectors respectively. The determinant shows how much an area changes after the 

transformation but in this case the initial area formed by the two initial basis vectors 

is one. This means that the determinant would be equal to the final area, which is the 

cross product. If vectors are perpendicular the size of the area that they form is bigger 

than if they were close to parallel. If you scale one vector by a factor, the area that it 

forms with another vector also scales by the same factor. 

 

The “true” cross product, the 3d cross product (of two 3d vectors)  is not a number, it is a vector the magnitude of which is  the 

area between the two vectors that is perpendicular to the plane defined by the two vectors with a direction defined by the right 

hand rule.  

 

The vectors length is the area of the parallelogram and its direction is 

perpendicular to the plane the two vectors form. The direction of the 

vector is extracted from the right hand rule (from the orientation of the 

basis vectors of the plane)  

 

The formula for the cross product of two 3d vectors can be extracted if 

we take the determinant of a 3*3 matrix where the first column is just 



 

 

the basis vectors of the 3d space. It has no meaning to put a vector in 

place of a number in a matrix, but it is just a notation thing in order to 

end up with a linear combination of those basis vectors which gives the 

cross product vector. 

  

 

Understanding cross product in terms of linear transformations (the proof of the above formulas) 

 

Imagine that from the 2d cross product equivalent, you have to assume 

what a 3d cross product would look like. Intuitively you could think of 

three vectors which you combine into a matrix and get its determinant 

which corresponds to the volume between the three vectors and a plus 

or minus depending on the orientation. The determinant is a number 

not a vector, but we know that the cross product is a vector.  

 

 

This is the numerical formula for the vector p that we 

are looking for that is the cross product of v and w. 

The determinant of a 3*3 matrix is equivalent to a function  that 

gets in three vectors and outputs a number or in other words a 

linear transformation from 3d to 1d space. So there is a way to 

describe this function as matrix-vector multiplication. Assume that we 

replace the first vector with a variable vector (three variables for each 

coordinate) so that now the function is a function of three variables. 

Due to the duality the matrix-vector multiplication can be represented 

by an equivalent vector-vector dot product. So we are looking to find 

this dual vector p.  

 

What vector p has the property that when taking its dot product with 

any random vector [x y z] has the same result as plugging x y z as the 

first column of a matrix with fixed 2nd and 3rd columns as v and w and 

taking its determinant.  

 

Or the geometrical equivalent 

what vector p has the property that when taking its dot product with a 

vector [x y z] it gives the same result as calculating the volume between 

the vectors v, w and [x y z]. xyz is shown here with white color. 

  



 

 

The volume of this object (parallelopiped) is the same with multiplying 

the area of the parallelogram with the component of xyz perpendicular 

to v and w plane. 

 

But this is the definition of the dot product between xyz and a vector 

perpendicular to v and w with length equal to the area of the 

parallelogram v*w! So the vector that we are looking for is this vector 

and is the cross product of v and w.   

The formula that we found before for the cross product must 

correspond to a vector that is perpendicular to v and w and has a length 

equal to the area between v and w. 

 

Cramer’s Rule 
Solving linear systems of equations 

There are several computational methods of solving systems of linear equations using linear algebra. Cramer’s rule is one of 

them. We will see the geometric interpretation of Cramer’s Rule. Although have in mind that Gaussian Elimination is always a 

faster method. 

 

Systems with Orthonormal matrices 

 

Solving linear systems of equations where the 

constants matrix represents an orthonormal 

transformation is very easy. The dot product of 

the transformed vector with the transformed i 

vector would be the same with the dot product of 

the original vector with the original i.  

 

But the dot product of the original vector with i is the projection of vector onto i, which is the x value. So the dot product of the  

transformed vector with the transformed I vector (which are known) are the x and the dot product with the transformed j is y. 

You can find [x y] with two dot products.  

 

Non orthonormal matrices 

We want to find the solution to a linear system of equations which is represented by a non orthonormal transformation 
−−

= vxA

. In a 3d space case, we want to find the x, y and z coordinates of vector x. 

 

You can represent the coordinate of a vector in any of its basis vectors, 

with its dot product with this basis vector. Another way to represent it is 

with the signed volume of the parallelepiped that this vector forms with 

the other two basis vectors. The area of this object is one, so its volume 

which is its area times its height would be its height which is the 

coordinate of the vector in that axis. But this signed volume is the 

determinant of the three vectors that form it. Equivalently you can 

represent the other coordinates with the respective determinants. So we 

express the x,y and z unknown coordinates as determinants.  



 

   

These volumes are scaled by the same amount after a transformation is 

applied to the space. They are scaled by a factor which is equal to the 

determinant of the transformation matrix. 

 

 

 

Using a 2d space for simplicity, we can represent x and y with the areas of 

the respective parallelograms, which is the respective determinants. After 

the transformation the area between the transformed i and transformed x 

(the vector v) is equal with the initial equivalent area times the scaling 

factor which is the determinant of the matrix. But the initial area is x so 

)det(A
Areay =

 

The Area is the determinant of a matrix the first column of which is the 

transformed basis vector I and the other is the result vector v. We do a 

similar process for x. This formula is the Cramer’s rule. It can be 

generalized for more dimensions.  

  

 

Change of basis 
Any way to transform a set of numbers to vectors is called a coordinate system. You can think of a vector’s coordinates as scalars 

that scale the basis vectors of the space. 

 

If you want to solve a linear system of equations Ax=v then the output vector v must be expressed relative to the initial 

coordinate system (the basis vectors of the space as it was before the transformation). If you know the output vector coordinates 

relative to the transformed coordinate system (the transformed basis vectors), then you have to transform it first to the initial  

basis and them solve the linear system. 

 

How to change basis 

We know that a vector v is expressed in terms of a coordinate system as [-1 2]. We know the basis vectors of that coordinate 

system relative to ours b1=[2 1] and b2=[-1 1]. This means that we can think of this situation as a linear transformation applied 

to our space and transforming it to the new space. The transformation is represented by the known 2by2 matrix with columns 

the transformed basis vectors [2 1] and [-1 1] expressed in the initial basis. The vector v can be expressed as a linear combination 

of its basis vectors. Since we know this linear combination (the vector coordinates) and the basis vectors expressed in the initial 

basis, we can express the vector v in our coordinate system (the initial basis) by multiplying its x and y coordinates with the 

respective basis vectors. The result is the vector v expressed in our basis. This is a change of basis from the transformed basis 

to the initial basis and it is actually a vector matrix multiplication v0=Av1.  



 

Imagine that you have a vector x that lives in a certain space and a linear transformation (A) is applied to that space to transform 

it to a new one Space0-->A01-->Space1. The vector x is transformed along with the space and ends up in a new location. This can 

be represented by the typical linear system Ax=v 

 

● If you know the transformation matrix (A) and the vector v expressed in the transformed space basis (v1) and you want to 

express the vector to the initial space basis (v0), you do a change of basis. You can think of this situation as a transformation 

applied to a vector (x) that transformed it to v, but v is expressed in the transformed basis (Ax=v1). If you just want to find 

how v1 is expressed in the initial basis you just do v0=A01v1.  

● If the vector after a transformation is expressed in the initial space coordinates (v0) and you want to express it in the 

transformed space,  the situation is expressed with the typical Ax=v0 linear system. In this case you have to compute the 

inverse of A. AA-1x=A-1v ---> x=A-1v. x is actually the same linear combination both in the initial and in the output space, so 

x coordinates are actually the same coordinates with v as it is expressed in the transformed basis. So x=v1 and v1=A-1v0 

  

You have a vector expressed in another basis. A known transformation (expressed in your basis) is applied to that space. The 

vector is transformed with the space and you want to express the transformed vector in its space basis (the beings of that space 

want to know where their vector would land after your transformation) 

Any vector in base 1 -> change of  basis -> transformation in that basis -> inverse change of  basis. The formula for this 

can be written as (A01-1.M0.A01.v1) or in general terms: A-1.M.A.v. The A-1.M.A notation (read right to left) is quite common so 

whenever you see it you can think in terms of shift of perspective. 

A01.v1=v0 

 

 

 

.M0.A01.v1=v0’ 

 

 

A01-1.M0.A01.v1=v1’ 

 

 

A transformation is applied to a space and transforms it. There is a vector in that space which is transformed. We want to 

express the transformation to eigenbasis (see next chapter first) 

Initial Vector multiplied by the  

transformation that transforms 

the basis to eigenbasis, results in 

Transformation expressed in initial basis 

times the prior, gives the transformed vector 

expressed in eigenbasis. 

Inverse change of basis to eigenbasis, times 

the prior gives the transformed vector 

expressed in initial basis. 



initial vector expressed in 

eigenbasis.  

 

 

It is convenient to do the three matrices multiplication first  that results in a new matrix which is the transformation expressed 

in eigenbasis (a diagonal matrix). this matrix can be multiplied (transform) by any vector expressed in eigenbasis, 

 

 

Eigenvectors and eigenvalues 
Eigenvectors of a transformation are the vectors that remain on their own span after a transformation. Notice that they can be 

extracted for square matrices only. For non-square matrices we extract singular vectors and singular values. 

 

 

 

  

Suppose a transformation is applied to a 2d space. All vectors are 

knocked off the lines that they span. All except some special vectors 

that remain on their own span. These are the eigenvectors of this 

transformation. All the vectors that lie in that line can be expressed 

as a linear combination of a unit vector on the line. Each 

eigenvector has a special value attached to it, the factor by which is 

stretched or squished after the transformation. This value is the 

eigenvalue of the eigenvector.  

 

Why are eigenvectors important? In a 3d transformation, for 

example a 3d rotation, if you can find an eigenvector then you have 

found the axis of rotation. In this case the eigenvalue of that 

eigenvector would be 1 since a 3d rotation is a rigid body rotation 

which means that all the vectors of the space do not stretch or 

squish but they just rotate as they are.  

 

So in many cases it is more convenient to think of a transformation 

in terms of eigenvectors and eigenvalues instead of the 

transformation matrix which gives too much weight to the 

coordinate system. The “eigen way” of description is less 

dependent on the coordinate system.  

 

 

 

 

This is the formula that describes an eigenvector v. It means that if you apply the 

transformation A to the space of v, the vector v will be just scaled by a factor (the 

eigenvalue). you have to solve for λ and v.  



 

And this is the reasoning behind finding the eigenvectors and eigenvalues of a 

transformation.  

 

First we have to represent λ vector multiplication with a matrix vector multiplication, 

where the matrix is such that when a vector is multiplied by it, will have the same effect 

as just scaling the vector. This matrix is a diagonal matrix which has λ in the diagonal and 

0 everywhere else. This matrix is equal to λ multiplied by the Identity matrix (all zeros 

but ones in the diagonal). Then by doing algebra we end up in a new matrix (A-λI) that 

when multiplied by the vector v gives the zero vector. This equation is satisfied if the 

vector v is the zero vector but we want a non zero vector v. This means that the 

transformation associated with the A-λΙ matrix transforms v into the zero vector. Since 

in a full rank transformation only the zero vector lands on the origin, this can only be true 

if this is not a full rank transformation. This means that it squishes space into a lower 

dimension which means that the unit object’s volume of the initial space becomes zero, 

which means that the determinant of that matrix is zero. From the determinant equation 

we can find the eigenvalue λ. Since you know λ, you can solve the linear system of 

equations (A-λI)v=0 to find the eigenvectors v, which is the kernel (the null space) of the 

A-λΙ matrix. 

 

  

 

An example of a transformation.  

For λ=2 the solution to the linear system gives x=-y which means 

that the eigenvectors are all the vectors [y -y] which is the span of 

the vector [1 -1] 

 

For λ=3 the solution to the linear system gives y=0. This means that 

the eigenvectors are all the vectors that have no y, which is the 

span of the vector [1 0] 

 

A 2d transformation can have no eigenvectors. For example a 2d 

rotation by 90 degrees.  

 

The eigenvalues for such a matrix are imaginary numbers. The fact 

that there are no real eigenvalues indicates that there are no 

eigenvectors. 

 

 

A shear transformation 



 

Notice that a single eigenvalue can have more than a line full of eigenvectors. For example a scaling by a factor, here 2.  

There is only one eigenvalue 2 but all the vectors of the space are eigenvectors since they remain in their own span. Solving the 

determinant gives λ=2. The linear system then becomes the zero matrix times v equals 0. Since any non zero vector multiplied 

by the zero matrix gives zero, eigenvectors are all the vectors of the space. If you want to select two eigenvectors that span the 

whole space its convenient to select [1 0] and [0 1] 

 

Eigenbasis 

When both basis vectors are eigenvectors 

 

 

In a diagonal matrix, all the basis vectors are eigenvectors since if we think of the 

transformation that it describes, all basis vectors land on a scaled position within their 

span. They are just scaled. And the diagonal values are the eigenvalues since they are the 

factor by which they scaled.  

 

Diagonal matrices are very convenient. You can very easily calculate the powers of a 

diagonal matrix. Its just a diagonal matrix with the eigenvalues (the diagonal values) 

raised to the power. If instead try to calculate the power of a non diagonal matrix, is a 

nightmare. 

 

If a transformation happens to have enough eigenvectors so that a combination of some of them span the entire space, 

you can choose to use these eigenvectors as the basis vectors of the initial space. You just must make a change of basis, to 

express the transformation in relation with the new basis. Doing so the transformation matrix expressed in eigenbasis is 

guaranteed to be diagonal with the corresponding eigenvalues in the diagonal. It is so, since each basis vector lands on a scaled 

position within its initial span, so all the other coordinates of the transformed basis vectors are zero. The eigenbasis vectors are 

just scaled by the transformation. 

 

V-1MV = Λ  

M: a transformation of a space expressed in some basis of the space 

V: a matrix whose columns are vectors that remain in their span after 

the transformation M is applied to the space (its columns are 

eigenvectors of M) 

Λ: I*λ (the eigenvalue matrix, a diagonal matrix with eigenvalues in the 

diagonal) 

 



 

By V-1MV we express the transformation M in relation to the new basis 

vectors which are eigenvectors of M. This will produce a new matrix, 

the matrix Λ, describing the same transformation but now the new 

matrix is diagonal.  

 

Actually this way, we diagonalizing matrix M. the transformation 

defined by M is the same with the one defined by Λ. The only difference 

is that transformation Λ is expressed in an eigenbasis of M.  

 

or M=VΛV-1 

M can be broken down into its eigenvector matrix times its eigenvalue 

matrix times the inverse of its eigenvector matrix. 

 

So if you want to compute a power of a non diagonal matrix, it is much easier to transform the matrix to an eigenbasis (if it has 

enough eigenvectors), compute the power of the new matrix which is diagonal and then transform back to the initial basis. To 

do so we have to find the eigenvectors and eigenvalues of that transformation (we have to find the matrix V and then invert it). 

So we get the V-1MV=M’ where M’ is diagonal.  

Then we can process M’ for example take the nth power M’n and then transform back to the initial basis 

VM’nV-1=Mn  

 

Eigenvectors for symmetric matrices 

Symmetric matrices (a square matrix that is equal to its transpose, its rows are the same as its columns, whatever exist in one 

part of the diagonal exist also in the other) have orthogonal eigenvectors. As any matrix, a symmetric matrix S can be 

decomposed to a product of its eigenvector and eigenvalue matrices but in this case the eigenvector matrix and its inverse or 

transpose are orthogonal matrices. And therefore symmetric matrices are excellent for computations. Because they can be 

decomposed to orthogonal and diagonal matrices which are excellent for computations.  S=QΛQ-1 = QΛQT  

 

Singular values and singular vectors 
Like eigenvectors but for non-square matrices.  

 

SVG is the best factorization of all, because it decomposes 

a matrix to its most important components by (and this is 

the important thing) decomposing it to two orthogonal 

and one diagonal matrices (these are the best matrices for 

computations) 

 

U left singular vectors 

V right singular vectors  

Σ singular values matrix  

  

When the matrix A is square the U and V are identical and 

is the one eigenvector matrix.  

 



We can make these singular vectors perpendicular to each 

other (linearly independent vectors) and that makes VT 

and U orthogonal matrices. Σ is diagonal. So SVG combines 

the best of matrices.  

 

Rotation (VT) + stretch (Σ) + rotation (U) 

That’s what singular vectors and values do to a space.  

 

The singular values are sequenced from largest to 

smallest. So σ1 is larger than σ2.  

 

Approximating a huge matrix using SVG 

Using SVG you can get the important part of a matrix. Assume you have a huge matrix which is impossible to work with. You 

randomize the huge matrix and get a smaller sample from it (so it is more efficient for calculations). The random sampling is a 

good representation of the huge matrix. Then you apply SVG and you keep the larger singular values. So you can simplify your 

problem. The largest values are the important ones because these define the dominant part of the transformation (the largest 

stretching). The others are insignificant in comparison. So you can approximate the initial huge matrix with a simpler one 

(actually with three simple matrices U, V and Σ) by getting the most important features of it. Then you can make calculations 

extremely more efficient.  

 

 

Abstract vector spaces 
What are vectors at a fundamental level? List of Real numbers, vectors in a space or something else? 

 

As you become more fluent with change of basis you start to realize that you are dealing with a space that exists, independently 

of the coordinates that you give it.  

 

Thinks like the determinant and eigenvectors are independent from 

the coordinate system. They are inherently spatial. You can freely 

change the coordinate system without changing the underlying values 

for either one. But what is space really?  

 

 

Functions as vectors 

 

Functions can be added together and can be scaled. To add them you have to calculate 

the sum of the output value of each function in a specific location and do this for all 

infinite locations (inputs). To scale them you have to get the product of each output 

value with the scalar.  

 

Given that the only thing vectors can do is to be added together and be scaled  it seems 

that we can get the same problem solving techniques that we used in linear algebra 



 

 

(linear transformations, null space, dot products, eigen everything etc.) and apply 

them to functions (which are actually vectors with infinite coordinates or rather 

vectors are functions with a specific set of input - output values).  

 

If you think of the analogy, you can think of the coordinates of a vector as the output 

values of a function. The input value can be considered to be the position of the 

coordinate. You can think of a vector [7 0 5] as a function f that gets 3 inputs and gives 

3 outputs. f(1)=7, f(2)=0, f(2)=5. You can think of a vector as equivalent to a specific 

function f (although f in reality would have values for each position in between). So a 

3d vector is equivalent to a function with some specific properties. In this analogy, the 

whole 3d space of infinite 3d vectors is analogous with infinite functions. Another 3d 

vector would be equivalent to another function.  

 

 

 

 

Linear transformation of a function 

 

 

For example there is reasonable notion of a linear transformation of a 

function. But what does it mean for a transformation of functions to be linear? 

In general linearity has a somewhat abstract and symbolically driven 

definition. A transformation if linear it satisfies two properties, additivity and 

scaling (homogeneity): 

 

 

 

 

Additivity means that if you add two vectors v and w, then apply a 

transformation on the sum you get the same result with adding the 

transformed versions of v and w. 

 

Scaling means that if you scale a vector and then apply a transformation, you 

get the same result as if you scale the transformed vector by the same amount. 

 

The way this is often described is that linear transformations preserve 

addition and scalar multiplication.  

 

The illustration of grid lines that remain parallel and evenly spaced after a transformation while preserving the origin, is a 

consequence of the above statement, in the case which such a transformation is applied to vectors (points) of a 2d space.  

 

An important consequence of a linear transformation is that it is completely described by where it moves the basis vectors. Since 

any vector can be expressed by scaling and adding the basis vectors in some way, finding the transformed version of a 



vector, comes down to scaling and adding the transformed versions of the basis vectors in that same way . This is what 

makes matrix vector multiplication possible since it is translated numerically, to a matrix vector multiplication. 

 

Derivative operation as a linear transformation 

 

 

The Derivative operation is a linear operation (operation, another word 

for describing a transformation) since it preserves both addition and 

scaling. Just as a 2d linear transformation does this for 2d vectors, the 

derivative operation (an infinite dimensions transformation) does for 

functions (vectors of infinite dimensions).  

 

You can think of all functions (the derivative of which exists) as a space. 

A certain function would be a vector of that space. This space could be 

described by some basis vectors, or basis functions since a function is a 

vector. A transformation could be applied to that space, transforming it 

and all the vectors (functions) with it. If this transformation exhibits 

additivity and scaling then it is a linear transformation. The derivative 

operation is such a transformation and as such it can be represented by 

a matrix.  

 

 

 

In this analogy each vector of that space (represented as a point where 

its tip is), is a distinct function. The basis vectors are functions 

themselves. All other functions can be expressed as addition of scaled 

basis functions. The derivation operation is a linear transformation of 

that space. A transformed function is the same linear combination of 

transformed basis functions. You can do all linear algebra stuff in this 

context. For example finding the eigenvectors or more appropriately, 

the eigenfunctions. An eigenfunction of the derivative operation is the 

function ex since it remains the same after the transformation. Every 

function ekx is an eigenfunction (where k is the eigenvalue as I think). 

 

 

Let’s try to create a matrix that describes the derivation operation. It 

seems tricky since function spaces tend to be infinite dimensional (if 

their domain is infinite). Let’s define the space as the space of all 

polynomial functions. They have a finite number of terms but they can 

have infinitely large powers.  

Next we have to define a basis. Since polynomials are written as 

addition of scaled powers of x, we can think of powers of x as the basis 

functions. The number of basis functions is infinite since we can have 

infinitely large powers of x, so every vector (polynomial) can be 

expressed as a list of infinite coordinates where 0 exist in all places of  

zero scaled powers. 



 

 

 

  

In general terms since a polynomial has finite number of terms, its 

vector representation would be a finite list of numbers followed by an 

infinite tail of zeros. So if you want to construct a matrix that represents 

the derivation operation you can do it by taking the derivative of each 

basis function and putting the coordinates of the result in each column. 

This is the equivalent of where the basis vectors land after the 

transformation and is the matrix that describes the transformation 

from the view of the initial basis. 

  

 

The result is a matrix with first column of 0s and a shifted diagonal of 

real numbers increased by one. If a polynomial is represented as a 

vector we can think that the derivation operation is applied to its space 

and transforms the vector to a new position. The resulting vector 

represents a polynomial too. This resulting polynomial is the derivative 

of the initial polynomial. If you do the multiplication you will see that 

this is indeed the derivative. This happens because the derivative 

operation is a linear transformation. 



 

 

 

So taking the derivative of a function and matrix vector multiplication 

are members of the same family.  

 

So back to the question of what a vector is. There are a lot of vector-ish  

things in math. Where there is a reasonable notion of scaling and 

adding, whether this is arrows in a space, or a list of numbers or 

functions or whatever else, linear algebra operations should be able to 

be applied. All these different things that exhibit these two properties 

are called vector spaces. You can think of a vector as any “object” of 

such a space. An analogy of asking what a vector is, is asking what the 

number 3 is. It can be many things, 3 apples, 3 lists, 3 functions etc. It is 

just a triplet of objects. 

 

Some comments 

It's amazing how this makes everything add up. You can easily see how e^x is an eigenvector of the derivative transformation. 

While I was considering how you would go about calculating the determinant of an infinite matrix, I realized that it is just 0 

because the first column is 0. Which makes sense since the derivative reduces a "dimension" from the polynomial (one of the 

transformed basis functions can be expressed as a linear combination of the other transformed basis functions). Which also 

explains why derivation is not invertible. For example the derivative of 2x is 2. but you can’t go back from 2 to 2x because the 

derivative of 2x+c is also 2. There is an infinite number of functions that have derivative 2.  

 

I want to point out that there's actually a lot of depth to defining the invariants, i.e. geometric properties like the trace, 

determinant, set of eigenvalues, etc. of a linear transformation when you have infinitely many dimensions. For instance, with 

the determinant you have to multiply an infinite collection of numbers and you have to ask questions like: "When will this infinite 

product converge?"In finite dimensions you have a discrete set of eigenvalues, but for infinite dimensional transformations you 

can have a full continuum of eigenvalues as well. This deep interplay between linear algebra and real analysis is the subject 

of functional analysis. 

 



The 8 axioms of linear algebra 

 

In modern theory of linear algebra there are 8 

axioms that a vector space must satisfy in order for 

all the linear algebra operations to be applied to it. 

They are just a check list that you can easily check 

to determine if the two fundamental properties of 

addition and scaling are preserved after a 

transformation. 

 

So if you define some bizarre vector space that 

exhibits addition and scaling, if it satisfies these 

axioms then you can use the linear algebra tools to 

that vector space. 

 

This abstract definition of vectors is the reason that every math book describes a linear transformation using addition and 

scaling in the definition rather than grid lines that remain parallel and evenly spaced. They don’t want to be limited to a specific 

example. Abstractness is the price of generality.  

 

 

Todo 
● Transpose matrix 

● Adjugate matrix 

● Adjoint matrix 

● Exponential matrix 

● Trace  

● Gaussian elimination and row echelon  

(it is an algorithm for solving systems of linear equations. So a method for finding the inverse of a matrix right?) 

● Diagonalization 

● Characteristic polynomial 

● Minors and cofactors  

● Invariants  

 

 

Misc 
Norm 

In mathematics, a norm is a function from a real or complex vector space to the nonnegative real numbers that behaves in certain 

ways 



 

L2 norm (Second norm) 

In particular, the Euclidean distance of a vector from the origin is a norm, called the 

Euclidean norm, or 2-norm, which may also be defined as the square root of the inner 

product of a vector with itself (which ultimately gives the Euclidean distance).  

||y|| = sqrt(y*y) = sqrt(y12+y22) 

 

 

 

 

Invariants 

a function, quantity, or property that remains unchanged when a specified transformation is applied.  

 

Linear combinations 

We use the term linear combination to describe any expression constructed from a set of variables by multiplying each variable 

by a constant and adding the results. (me: Since y=ax is the function of a line, the linear combination can be thought of as a 

combination of lines.) 

 

 the transformation (function) L must exhibit these two properties in order to be 

considered linear. 

 

A function f is linear if it obeys the following equation: 

● (Additivity)  

If the input to the linear function f, consists of five parts x1 and three parts x2, then the output of the function will consist of 5 

parts f(x1) and three parts f(x2). Essentially, linear functions transform linear combinations of inputs into the same linear 

combinations of outputs. A function f is linear if it transforms linear combinations of inputs, into the same linear combinations of 

outputs. 

● (Homogeneity) )()( xfxf =   

 

The general equation of a line (in 2 dimensions) is ax+by=c and even in multiple dimensions you can parameterize a line by a 

series of expressions like a0x0+b0t=c0,a1x1+b1t=c1,…,anxn+bnt=cn. As such, terms with only one power of a variable (e.g, ax or 

by, but not xy are called "linear terms", since they are the terms you find in equations for lines. 

 



 

Can we say that a transformation is linear if and only if every dimension is transformed linearly? For example in a 2 dimensions 

transformation (plane to plane for example tablet to wall), x should be transformed by a linear f(x) and y should be transformed 

by a linear g(y). If so, then the transformation is linear and can be represented by a matrix. If it wasn’t linear transformation (for 

example dimensions were transformed with x2) then you couldn’t represent this transformation with a matrix. You should have 

a matrix for each point since each point is transformed differently 

 

A linear function can be considered as a transformation function that maps two spaces with each other. 

Knowing the outputs of a linear transformation T for all “directions” (dimensions) in its input space is a complete 

characterization of T. Without this linear structure, characterizing unknown input-output systems is a much harder task. 

Linear algebra is the study of linear structure, in all its details. 

 

For example if T is a linear transformation that maps a two dimensional space to another two dimensional space (for example 

tablet to wall), then by mapping two lines of the tablet surface to the wall surface, one for each direction, we can completely 

describe T. first we create a point in the input space on (0,0) and see where is the (0’, 0’) in the output space. Then we map the 

(1,0) and the (0,1) which are the two directions. They are mapped to (1’,0’) and (0’,1’). knowing these two we have a complete 

characterization of T. If we know that T is a linear transformation (by testing input output pairs for example -you need to have 

linearity in all dimensions, here two, as I understand) then any input to the linear function T can be described as a combination 

of (1’,0’) and (0’,1’). For example here we want to find the mapping (projection) of the (2,3) vector of the input space: 

 

 

 

A Linear transformation can be represented by a matrix 

y is a linear combination of the columns of A 

 

 y is a linear combination of the columns of A. This 

means that you can express any linear combination 

of a set of vectors as a matrix vector product.  

 

 

This is a core idea of linear algebra. Multiplication by a matrix A m*n can be thought of as a linear transformation TA that takes 

n-sized vectors as inputs and produces m-sized vectors as outputs. In the above example your input is the x vector (size 2) which 

is transformed to a size 3 vector. Instead of writing y=TA(x) to denote the linear transformation applied to the vector x we write 

y=Ax. We say TA is represented by the matrix A. 

 

The action of a function on a number is similar to the action of a linear transformation on a vector 

 

 

 



Abstract vectors: Things that can be added. As I understand it, vectors can be thought of as operations to a state, that when 

applied together to this state have the same effect with when they are applied to it one after the other? For example, a wave can 

be represented like a list of three numbers (wavelength, magnitude, phase) and two waves can be added together. (so as I 

understand, you can represent a wave with a 3d vector and make calculations between vectors to find the interaction of waves.) 

 

Vector operations 

addition, subtraction, scaling, dot product and cross product 

 

Matrix operations 

addition, subtraction, scaling, matrix product (AB), matrix vector product (Av-), matrix inverse (A-1), trace (Tr(A), determinant 

(det(A) or |A|) 

 

Inverse:  

The cumulative effect of applying A-1 after A is the identity matrix (μοναδιαίος πίνακας):  

 

 

Identity matrix  

A*I=I*A=A where I is the identity matrix 

 

 

Inverse matrix 

Have in mind that not all numbers have an inverse. 0 doesn’t have.  

Only square matrices can have an inverse but not all have. Those that don’t are called 

singular or degenerate.  

 

 

Transpose matrix 

 

 

A 4 dimensional vector belongs to the set of R4, the set of all 4d vectors with real numbers as values.  

 



The essence of Calculus  

Introduction  

 

 

 

 

Imagine that we want to find a formula that gives the area of a 

circle. We can split it to different areas. One kind of splitting is 

to split the circle area to concentric circle. This splitting makes 

sense since it respects the symmetry of the circle and Math has 

a tendency to reward you when you respect its symmetries. 

You can try to approximate the area of such a slice considering 

it as rectangle-ish. The smaller the thickness, the more true this 

would be (the more rectangular the slice would be) since top 

and bottom sides would tend to be equals. Each slice has an 

area of 2πr*dr and the area of the circle is the sum of all these 

areas.  

 

We can create a cartesian plane with x axis the radius of a slice. 

Approximating a slice with a rectangular shape, we can place 

them all together on the x axis. The sum of their area would be 

the area of the circle.  

 

The thickness of the slice is dr the height is 2πr. The x axis is 

the r the y axis is the height which is a function of r so we can 

express it as a function f(r)=2πr and graph it. Doing so, we can 

clearly see that the sum of many small slices approximates the 

area under a graph. The smaller the dr the closer we would be 

to the area under the graph. So we can deduce that the exact 

(not an approximate) answer is the area under the graph. We 

can deduce that the value that our formula (sum of many 

small values) approaches without never reaching, is the 

exact answer. Since the graph forms a triangle its area equals 

to 
323
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 which is π32 or πr2 in general. 

 

Many problems can be approached like this, as a sum of small 

values. It turns out that most of these problems are equal to the 

area under a graph. This happens whenever the quantities 

that you add, the sum of which approximates the quantity 

that you are looking for, can be thought of as the areas of 

many thin rectangles sitting side by side.  

 

In order for a quantity to be able to be represented by the area 

of a rectangle b*h, it needs to be able to be expressed as a 

product of two quantities where one quantity is the one across 

which we slice and the quantity that we are looking for is a 

function of the sliced quantity. 

 



For example finding the distance traveled by an object if you 

know its velocity at each point in time.  

 

Integral and derivative  

The Integral of a function F(x) at a certain input x, represents the value to which a certain sum converges. The value to which 

the sum of the “signed” areas of a large number of small parallelograms up to a point x under the function graph converges to , 

as the side of the parallelograms becomes smaller and smaller is called the integral of that function f at that specific input x. Since 

the integral value depends on the input x, the integral is a function of x too.  

 

The derivative of a function A(x) at a certain input x, represents the value to which a certain ratio converges. We know the 

function F(x) but we don’t know the function that describes the area under its graph (its integral A(x)). What we do now, is how 

the area is affected if we make a small change to the input value x of the function f. This value can be represented by a ratio and 

is called the derivative of the function that describes the area (the derivative of the integral) at that specific point. Since the 

derivative value depends on the input x, the derivative is a function of x too.  

 

The derivative of the integral of a function at a certain input is equal to the value of the function at that input. This is the 

fundamental theorem of calculus. 

 

 

 

This technique is important since many problems that can be expressed as 

the sum of many small things can be reframed as finding the area under a 

graph. 

 

The area under a graph between 0 and a random value x, is a function of x 

and is called integral of the graph’s function. (the value which the sum of 

the area of many small slices, approaches) 

 

Finding the area under a graph is genuinly hard. For example finding the 

area under the graph of x2. one way to approach this, is to think of what 

happens to A(x) if you slightly increase x. The smaller the dx, the better a 

rectangular area approximates the change in A. The ratio of a tiny change in 

A to the tiny change of x that caused it, is equal to whatever x was at that 

point, squared. We don’t know A(x) but we know one property that this 

function must have. 

 

This applies to any random function f(x) the graph of which has an area 

A(x). Giving a specific input x to the function A(x) results in a certain output 

value (a certain area). If you slightly change this input, the output changes 

slightly too. This tiny change to the output of A divided by the tiny change 



 

to the input that caused it, is about equal to the height of the graph that 

forms A, at the initial input, the output of f(x). This approximation gets 

better as the change gets smaller. 

 

This ratio shows how much the area will be affected by a small change in x. 

this is the definition of the derivative of the function that relates the area 

with x. More formally, the derivative is whatever this ratio approaches 

as the slight change gets smaller and smaller. The derivative is a 

measure of how sensitive a function is to a change in its input. In this 

case the function is A(x) which gives the area under the graph, We don’t 

know the function A(x) but we know that its derivative is x2.  

 

Since the area that a function F(x) forms with x axis, is a function of x itself, 

it has its own graph too. The area under the F graph at a point x1, is the value 

of the function A at x1. the derivative of the function A is the original 

function F. The derivative of F is a different function.  

 

 

The fundamental theorem of calculus 

The derivative of a function that describes the area under a graph, gives you back the function that describes the graph itself. It 

ties together integrals and derivatives and shows how in one sense one is the inverse of the other (you integrate a function 

 

Derivative   
The derivative of a function at a specific point, is the best constant approximation of the rate of change of the function around 

that point. 

Derivatives is fundamentally a way to look at small changes in some quantity and how that relates to a resulting change in 

another quantity. The ratio of the resulting change to the change that caused it, is the rate of change of the resulting quantity 

(per unit change of the initial quantity) 

 

The paradox of the derivative at specific points 



 

The derivative is the value that the ratio approaches as dt goes 

to 0, it is not the a ratio itself, since if we wanted to get the exact 

value at a particular point, dt should have been zero and the 

ratio wouldn’t be defined.   

 

The pure math definition is that the derivative is the slope of 

the tangent to a graph at a specific point. The bigger the change 

(ds) the bigger the slope of the tangent. 

 

This way we can flirt with the paradox of change in an instance 

without ever touching it. 

 

 

 

This is how the derivative formulas are calculated. They arise 

algebraically from the ratio df/dt at certain points. Since we 

want to get the value which this ratio approaches as dt 

becomes 0, all terms with dt can become 0. what lefts is the 

approached value. 

 

 

 

A good way of thinking about the derivative of a function in a certain point, is that it is the best constant approximation of 

the rate of change of this function  around that point. At time t=0, is the car moving? The derivative of the distance to time 

function is speed to time, and the derivative formula gives speed=0 in t=0. So if it doesn’t start moving at t=0 then when does it 

start? This is a paradox and the roper answer is that the question makes no sense. It references the idea of change in a particular 

moment (t=0) but there can’t be no change in a particular moment. You need to compare it to another moment so that the notion 

of change has a meaning. What this means based on derivative definition, is that the best constant approximation of speed 

around 0 is 0. 

 

Derivative Rules 
Power rule, add rule, product rule, chain rule 

 

Power Rule 

You can visualize the various derivative formulas through geometry 



 

 

Suppose that a rectangle represents the function f(x)=x2. if we increase the side x by 

a small amount dx the area changes too, by a quantity represented as df.  

 

You can safely ignore any quantity that is dx raised to a power bigger than one since 

it would be really small.  This can be algebraically proved since when we divide by 

dx, the dx2 turns to dx and is added to the result. But since dx approaches 0, the 

contribution of that term is zero. [df=2x*dx+dx2 ---> df/dx=2x+dx ---dx-->0--->df/dx=2x] 

 

So it is safe to say that df=2x*dx so df/dx=2x meaning that the rate of change of the 

area of the rectangle as the side changes is two times the side.  If the side is 1 then a 

increase of the side by one unit of length, results in an increase in the area of 2 units 

of area.  

 

Generalizing, the derivative of polynomial terms give the power rule. 

 

 

 

 

How the power rule is proved algebraically 

Initially we have a quantity xn. We apply a small change in x, so 

the resulting quantity would be (x+dx)n. We want to find how 

the quantity changed. To do so we can get the difference 

between after and before the change. Doing algebra on the 

changed quantity, it turns out that all but a negligible portion of 

the increase in the output comes from the nxn-1 term.  

So df=xn-(x+dx)n=nxn-1dx+sth*dx2 ---> df/dx=nxn-1+sth*dx As dx-

>0 sth*dx->0 too. 

That is why the derivative of xn is nxn-1.  

 

 

d(sinθ)/dx=cosθ 

d(cosθ)/dx=-sinθ 

 

Derivatives of combinations of functions 

There are 3 basic ways to combine functions: add them together, multiply them and compose them (throw one inside the other). 

Subtracting or dividing can be expressed with the three basic ways.  

 



Sum Rule 

 
 

 

Product Rule 

Usually the best way to visualize a product of two things is as some kind of area. For example the area of a box in which each 

side’s length is a function of x. As you change x, the sides length change accordingly. This way the product of the two functions 

can be represented by the area of that box. So to see the derivative, you can see how this area is affected by a tiny increase in x.  

 

 

 

Chain Rule 

 

We express the change of the third quantity relative to the 

second one (dh). we have already expressed the second in 

relation to the first so at the end we can unfold everything.  

 

dh=d(x2)=2xdx 

 

 The derivative of g evaluated on h, multiplied by the derivative 

of h. 

 



 

 

 

Derivatives of exponentials 

All exponential functions are proportional to their own derivative. 

 

 

 

We want to calculate the derivative of the exponential 

function with base two 2t. Writing the ratio and making 

some algebra we end up with a formula which shows 

that the derivative is a product of the exponential 

function itself with some quantity that is a function of dt. 

 

As dt approaches to zero, this quantity approaches a 

certain value which is different for each base. So 

d/dt(at)=c*at where c is a constant that depends on the 

base a.  



It turns out that this constant equals to 1 if the base of the exponential is the number e. Actually this is another definition for e 

(the number to which that formula approaches when dt approaches to zero). We can find the derivative of any multiple power 

of e applying the chain rule.   

ce
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dct
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If we could express any exponential with base a as another exponential with base e,  we could easily calculate its derivative. 

 

Suppose we want to calculate the derivative of ax. We can try to express a as a power of e. We want to find a number x so that 

ex=a. Solving this equation for x (lnx is the inverse function of ex) we get that x should be the natural logarithm of a.  

axaeae xx lnlnln ===  

This means that  

aea ln=  

So any exponential with base a can be rewritten as an exponential with base e. This is a very convenient fact. When we work 

with the rate of change of exponentials, we should convert them to exponentials of base e.  

xaxax eea == lnln )(
 

This means that the derivative of any exponential with base a would be 

ae
dx

adx
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For the derivative of an exponential with base two 2x, this formula gives 
xxxxx edxdsoe 22ln2ln)2(2 2ln2ln === 

 

Which shows that the proportionality constant of the derivative is the natural logarithm of 2 (ln2=0.69315…) and is the 

quantity which is a function of dt that we described before. Generalizing we can see that the derivative of an exponential with 

base a is the same exponential multiplied by the natural logarithm of its base. 

x
x
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Notice that similarly we can express any exponential to 

an exponential with a base of our choice.  

 

Apart from the mathematical convenience, writing exponentials in the form with base e, gives the constant in the exponent a 

nice meaning.  

For example if we examine some phenomena like these: 

● The rate of change of a population is proportionate to itself (to the population at any given time) 



● The rate of change of the temperature of a hot liquid in a room, is proportionate with the difference of temperatures 

between the room and the water. Or said a little differently, the rate by which this difference changes is proportionate to 

itself (to the difference at any given time). 

● The rate at which an investment grows is proportionate to itself (to the money at any given time) 

In all these cases the rate of change of a variable, is proportionate to itself (to the variable at any given time). All these phenomena 

(the functions that describe these variables in relation to time) can be described with exponential functions since the rate of 

change of an exponential function is proportionate to itself. And it is preferable to express these functions as exponentials with 

base e and exponent a constant times t since this constant at this form has a natural meaning. It is equal to the proportionality 

constant of the rate of change. A function at has a rate of change lna*at. But looking at the function in the form at we can’t 

understand much about its rate of change. If we write it instead with base e, it would be elna*t and just by looking at it we can 

deduce the proportionality constant of its rate of change. It is the constant in its exponent (lna). 

 

Implicit differentiation 
Whenever you have a relationship between two variables, but in such a way that one isn’t a function of the other, then you write 

the relationship as an equation that has both variables in the left side (the other side could have a variable too). There is no way 

to simplify it more or to write it in a y=f(x) form (since y is not a function of x). The graphs of such equations are called implicit 

curves and the process of finding the derivative of such equations is called implicit differentiation in which the change of one 

variable is related to the change of the other (related rates) 

 

The equation of a circle is not a function. Its graph is just an implicit 

curve. Implicit curve is the set of all points (x,y) that satisfy some 

property written in terms of the two variables. x is not an input, y is not 

an output. They are just interconnected values related with one 

equation. The implicit differentiation formula gives: 

 

 

 

But where did it came from? We can name S the quantity described by 

the equation. We can think of the derivative of the quantity as the rate 

that this quantity changes from a small change in x and a small change 

in y. Doing algebra we end up with this formula.  

 

When we want to find the change of S where S is a function of x, then we 

end up in a changed quantity described by an equation like: ds=f’(x)dx 

which means that we can get an expression for the rate of change of S: 

ds/dx=f’(x).  

 

When the quantity S is not a function of x but an expression of two 

independent variables x and y, the change of S is an expression of dx and 

dy and as such it can’t be expressed as a ratio of dS over one one change 

(there are two changes). And the two changes are related to one 

another. If we change the x by a small dx, we must change the y by a 

specific dy so that we are still in the graph of the equation. dy is related 

to dx (related rates). Related rates can be expressed as an equation if 



we solve for dy/dx (-x/y in the case of the circle). It shows us how 

much dy must be in order for the x and y equation to be respected 

(in case of circle, the resulting position after dx and dy to still be in the 

circle). 

 

In case of S (or f) as a function of x instead, you change the x by dx and 

you try to find what is the df, how that dx causes the function to change.  

 

 

Related rates 

 

The implicit differentiation formula is related to another calculus 

problem, the related rates problem. Imagine that you have a ladder that 

slips through the wall at a known rate and you want to find the rate of 

change of the other tip (its speed) at time=0. y(t) and x(t) are related to 

each other with a formula. Y(0) and x(0) are 4 and 3 respectively. 

 

One way to solve this, is to isolate x(t) in one side, find what y(t) is from 

the known rate dy/dt and then take the derivative of x(t).  

   

There is though another way to do the same thing. The left part of the 

equation is an expression which is a function of time (although 

constant). The derivative of this expression is the rate at which the 

expression changes as time changes. A small change in time dt causes a 

small change in y (dy) and a small in x (dx). So ultimately a small dt 

causes a small change to the expression. 

 

So we can take its derivative over time to see how it changes over time. 

Doing algebra we can find the dx/dt rate of change.   

 

This looks like the derivative of the circle but in case of circle there is no 

notion of change in time. Just changes in dx and dy, not dt. A way to 

approach this is to think of the quantity S as a function of two variables.  

 

The key think is to restrict the small changes in such a way that the 

resulting position is still in the circle. This is what makes the 

differentiation implicit 

 

But when you restrict yourself in small changes that keep you on the 

circle, then the quantity S doesn’t change and consequently its 

derivative dS  would be 0.  

This condition keeps you in the tangent of the circle not the circle itself 

but for small enough steps the tangent line is identical to the circle. 

 

 



Limits 
They allow us to avoid talking about infinitely small changes by instead asking what happens as the size of change to a variable 

approaches zero. 

 

The df/dx ratio is almost what a derivative is. The actual 

derivative is whatever this ratio approaches when dx 

approaches 0.  

 

 

 

 

Graphing the limit as a function of h 
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we can see that this function seems continuous but it is not. For 

h=0 the output value is 0/0 which is not defined. This is 

represented in the graph with an empty point (a hole). We can 

clearly see though that as h approaches 0 no matter from what 

side it approaches it, the output value approaches 12.  

 

In this case though, the limit is not defines. The limit 

approaches a range of length 1, not a specific value. 

 

ε,δ definition of limits is a formal definition of what a limit is 

 

Calculating limits 

 

A process to find limits as I see it is to begin with the traditional approach where the limit of a product 

of functions is the product of their limits. This is true for all functions expect from the cases in which 

the product ends up to indeterminate forms. In these cases we must find other ways to calculate them 

and one of them is L’Hospital rule which works for cases in which the product results to 0/0.  

 

 

L’Hopital’s rule 



Only for 0/0 

When a function is 0/0 (undefined) for a certain input, you can use a trick to calculate the value to which the function approaches 

as its input approaches that certain value. You define it as a ratio of two other functions and you want to calculate the limit of 

that ratio as their input approaches a certain value. To see what value do these functions have close to that input (lets say x=a) 

we can see what happens in an input x+dx. If you can take the derivative of them at x=a (meaning that they are continuous at a, 

which means that if you zoom in close enough they look like straight lines) then their value is the value of their derivative at that 

point. So the limit can be replaced with a ratio of two derivatives evaluated at a certain input value. 

 

  

 

Cosx/x  (x=0 is 1/0) 

 

Sinx/x (x=0 is 0/0) 

 

 

 

x->a- and x->a+ is the way of saying x approaches a from the left and right respectively.  

 

 

 

With the exception of indeterminate form 



 

Integrals 

 

  

Find the average height between 0 and π.  

 

The integral of the function between 0 and π divided by the 

width between 0 and π. 

 

Or equivalently 

 

The average slope of tangents of the integral of the function 

between 0 and π which is the total slope between the start and 

end points. 

 

 

Capital F is the derivative of f.  

 

The notion of summing together infinite parts and dividing with infinity to get the average is represented by an integral divided 

by a length.  

 

Higher order derivatives 

 

The slope of the tangent of f(x) increases rapidly as we move 

close to 4 so its derivative (the second derivative of  f) has a big 

value there in relation to a more flat curve 

 



 

Graphical representation of the second derivative. The 

derivative is whatever the ratio of d(df)/dx2 approaches when 

dx approaches 0.  the size of the change of the change divided 

by dx^2 

 

 

 

Taylor series 
One of the most useful things of higher order derivatives is that they help us approximate functions 

 

Taylor polynomials are incredibly powerful for approximations, and Taylor series can give new ways to express functions. It is 

one of the most powerful tools mathematics has to offer for approximating functions.  

 

The usefulness of Taylor series is that allow us to take non polynomial functions and approximate them with polynomials around 

some particular input. The reason this is important is that polynomials are much easier to deal with mathematically than other 

functions. They are easier to compute, to take derivatives from, to integrate etc.   

 

 

 

In general, higher order derivatives of polynomial terms: 

 

For example lets think of the task to approximate the function 

cos(x) for input values around 0, with a quadratic polynomial. 

The general formula for a quadratic polynomial is 

P(x)=c0+c1x+c2x2.  

 

1. The polynomial must be 1 for x=0 as cos(x) does. From 

this equation we get c0. 

2. The slope of the tangent of the polynomial at x=0 (its 

first derivative) must be equal with that of cos(0). from this we 

get c1. 

3. The slope of cos(x) decreases around x=0 (the second 

derivative of cos(x) decreases) and specifically its value at 0 

must be equal to the 2nd derivative of the polynomial (which 

means that the polynomial should curve similarly to the cos(x) 

around 0). from this we get c2. 

 

This way we have calculated a quadratic polynomial that approximates 0. We can make better approximations if we add more 

terms to the polynomial. We find its term using the respective high order derivative. In this case for cubic term c3=0 which 

means that the specific quadratic polynomial is not only the best quadratic approximation but it is also the best cubic 

approximation.  

The higher order derivatives of the function that we want to approximate, match the derivatives of the polynomial. So the 

polynomial is constructed only with information of higher order derivatives at a specific point! 



 

 

 

Adding new higher power terms doesn’t affect the lower terms 

the coefficient of which are already calculated. This happens 

since the in second derivative of the polynomial evaluated in 0, 

all initial terms with higher order than 2, leave an x term or 

higher in the derivative, but they become 0 for x=0. This means 

that the constant of the (x)2 term is the only constant that 

affects the second order derivative of the polynomial.  

 

 

This is true for finding an approximation around 0.  

 

if you want to find an approximation around π, then you should 

write the polynomial in terms of x-π so that when you calculate 

the second derivative in π all terms with higher order than 2 

leave an x-π term or higher, in the derivative, but they become 

0 for x=π. This means that the constant of the (x-π)2 is the only 

constant that affects the second order derivative of the 

polynomial.  

 

 

 

The P(x) is called a Taylor polynomial.  

 

This has tremendous applications in many physics and engineering problems for which an angle theta slightly oscillates around 

a certain value. 

 

 

In math the sum of infinitely many terms is called a series, so if you take into account all 

the Taylor polynomial terms it becomes a Taylor series. If you have a series where you 

add more and more terms gets you increasingly close to a certain value then we say that 

the series converges to that value and we can write an “equality” for it where the series 

equals the value that it converges to.  

 

 



 

A Taylor series could converge to a certain value (the value of 

the function that we want to approximate at a certain input) 

only for a certain range of inputs. This range is called the radius 

of convergence for the Taylor series. The series diverges 

outside of that range. 

 

We can say that the effect of the derivatives of the function at 

that input doesn’t propagate outside of a certain range. 

 

There are test to see if a certain Taylor series converges or not. 

 

 

I get this “If you don’t plan to do anything bad you have nothing to fear” narrative. It really has a point in a prosperous world. 

What troubles me though is that no one can guarantee that our world will continue to prosper without any setbacks in between. 

In rough times populists prosper and its they that will be deciding what is good and what is bad. This time though they would 

have the means to  

 

Misc 
differentiation methods 

1. symbolic 

2. numerical 

3. automatic 

 

● Automatic differentiation 

http://colah.github.io/posts/2015-08-Backprop/  

It is a set of techniques to evaluate the derivative of a function specified by a computer program. AD exploits the fact that every 

computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, 

multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these 

operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a 

small constant factor more arithmetic operations than the original program. 

 

On simple terms, it is a way of automatically computing the derivatives of the output of a function using chain rule. Almost every 

function can be computed as a composition of simple functions which have simple derivatives. Using this fact, you can compute 

the derivative of any function that can be written as composition of simpler functions. 

 

Both of the classical methods (numerical and analytical) have problems with calculating higher derivatives, where complexity 

and errors increase. Finally, both of these classical methods are slow at computing partial derivatives of a function with respect 

to many inputs, as is needed for gradient-based optimization algorithms. Automatic differentiation solves all of these problems. 

 

http://colah.github.io/posts/2015-08-Backprop/


 

 

Forward-mode differentiation tracks how one input affects 

every node. (So we can calculate how one input affects all 

outputs.) 

Reverse-mode differentiation tracks how every node affects 

one output. (So we can calculate how every input affects one 

output.) 

 

That is, forward-mode differentiation applies the operator 

∂/∂X to every node, while reverse mode differentiation applies 

the operator ∂Z/∂ to every node. 

 

Reverse-mode differentiation is called backpropagation in the 

context of neural networks.  

(Are there any cases where forward-mode differentiation makes more sense? Yes, there are! Where the reverse-mode gives the 

derivatives of one output with respect to all inputs, the forward-mode gives us the derivatives of all outputs with respect to one 

input. If one has a function with lots of outputs, forward-mode differentiation can be much, much, much faster.) 

 

● Numerical differentiation 

Numerical differentiation (the method of finite differences) can introduce round-off errors in the discretization process and 

cancellation. 

● Symbolic differentiation 

Analytical or symbolic differentiation faces the difficulty of converting a computer program into a single mathematical 

expression and can lead to inefficient code. … Although computer algebra could be considered a subfield of scientific computing, 

they are generally considered as distinct fields because scientific computing is usually based on numerical computation with 

approximate floating point numbers, while symbolic computation emphasizes exact computation with expressions containing 

variables that have no given value and are manipulated as symbols. 

 

 

 

Transformational understanding of derivatives 

 

 

Another useful way to visualize derivatives is in the context of 

transformations. You have two number lines and a function 

f(x). In the first number line you mark the inputs to the 

function and in the second the outputs. The size of the 

stretching or squishing is the derivative of the function f.  

 

When they are stretched out a lot, then a small change in input 

causes a big change in the output. In the context of graphs, this 

is represented by a big slope of the graph at that point.  

 

For example for f(x)=x2 for x=2 the points around 2 are 

stretched by a factor of 4, and for x=3 they are stretched by a 

factor of 6. This because df/dx=2x 



 

 

If the derivative is smaller than 1 then it means that the 

stretching factor is smaller than 1 which means that the values 

are actually squished. For a derivative at a certain input and 

value of 1/2 they are squished in half the length.  

 

If the derivative is negative (for example df(-2)/dx=-4) the 

output values don’t only stretched out, they also flip around for 

example -2.1 goes to 4.2 while -1.9 goes to 3.8 

 

Infinite expressions and fixed points 

 

 

 

Imagine that we want to calculate what value this infinite ratio 

approaches. A way to think about it, is to say that this whole 

ratio equals to an unknown value x, to which it converges to. 

But you can clearly see that the ratio contains x inside it and 

consequently it can be represented as 1+1/x=x. Plotting the 

two functions f(x)=1+1/x and f(x)=x we can see that there are 

two solutions, x=φ and x=-1/φ. But the same ratio can’t 

converge to two different values, only to one, but which one 

and why? 

 

A way to approach the solution to the infinite fraction is to 

think of having a function f(x)=1+1/x and applying it over and 

over again to a random input and see where the result 

converges to. Then repeat for another random input value and 

compare, then another and so one. Doing it, we will see that all 

inputs converge to φ. Some of them might wander around -1/φ 

for a little bit, but then they move towards φ. We say that φ is 

the fixed point of the  

 

Notice that if you start from -1/φ then you stay fixed in that 

value. No matter how many times you apply f(x) you remain in 

that point. This is the only point for which the ratio “converges” 

to -1/φ. Even if you start very close to it, you end up in φ.  

 

 

The graph understanding The reason this happens, has to do with the derivative of the 

function 1+1/x. Both the graph understanding of derivatives 

and the transformational understanding of derivatives can 

help us understand this behaviour.  

 

We start from a random x value, we go to its f(x) then we move 

horizontally to cross the y=x line where the y value (the output 

of f(x)) is the same with the x value, so we can use this x value 

as the new input to f(x) and repeat. Doing it we will see that all 



 

 

 

 

values expect -1/φ end up to φ. And this has to do with the 

slope of f(x).  

 

In the transformation representation of derivatives repeatedly 

applying the same function means taking the values of the 

output number line, moving them to the input line and getting 

the new output line. Then repeat. One advantage of this 

approach is that you can see the behaviour of many inputs at 

once (like beginning from many inputs in the graph 

representation). The derivative of f(φ) is negative and smaller 

than one, so input values around φ gravitate around φ in the 

output, while the derivative in -1/φ is -2.8 which means that 

input values around -1/φ are repelled away from there in the 

output. This explains why values are moving away of -1/φ and 

end up in the region of φ.  

 

In φ you can think of the input dots turning around the output 

φ and closing in on it as if it was a gravitational point while -

1/φ acts like an anti-gravitational point throwing the points 

away. The first one is a stable fixed point while the second is 

an unstable fixed point of the function f(x)=1+1/x. As I 

understand it, fixed points are the values to which the process 

of repeatedly applying a function converges to. 

 

So the stability of a fixed point is determined by whether the 

magnitude of the derivative of the function evaluated to the 

point is greater or smaller than 1.  

 

So if you think of this infinite fraction through a limiting 

process (in which you want to approach the value that it 

converges to) then the most valid answer is φ.  

 

Finding Extrema  



 

● Critical points of a function are all the points for which the 

first derivative is 0 or undefined. 

● Not all critical points are extrema of the function 

● If the first derivative has a different sign before and after 

the critical point then this point is an extrema 

● If the first derivative is <0 before the critical point and >0 

after it, then the point is minimum. In other words if the 

second derivative at the point is positive (the first 

derivative increases around the point) 

 

 

Misc 

Calculus is the mathematics of change, of everything that changes. 

The real name is infinitesimal calculus 

Invented simultaneously by Newton and Leibniz 

Algebra is the math of relationships 

Probability or Statistics is the math of uncertainty, chance 

Geometry is the math of space, shapes. 

 

 

 

In general gradient measures how something changes. For example, in a line you can take two 

points and you measure how much it changes in one quantity, versus how much it changes in the 

other. So gradient (m) is the ratio of rise to run.  

 

But you can’t do this same thing in a function that is not linear since any two points give different 

result. The gradient constantly changes. What Newton did when studying the nature of gravity, 

was to try to calculate the gradient of the tangent. The problem is that the tangent is by definition 

tangent at one point only, so you can’t use rise/run since you need two points for that. What they 

did, was to approach the value of the gradient of the tangent by calculating the gradient of secants 

as the length of the secant approaches to 0.  

 

Dy/dx is the ratio of change of y to change of x as h (or Δx) goes to 0. 

 

 

Limits. You make conclusions about something that you don’t know, based on the things you know. 



 

Subgradients 

In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not 

necessarily differentiable. 

 

for any x0 in the domain of the function one can draw a line which goes through the 

point (x0, f(x0)) and which is everywhere either touching or below the graph of f. 

The slope of such a line is called a subderivative (because the line is under the graph 

of f). 

 

The definition of the derivative is extended to include the set of all possible gradients 

at a non-differentiable point. The point at (0,0) is not differentiable, but it is 

subdifferentiable. We can take the set of all lines that touch at just that point, and 

that is the subderivative/gradient. 

 

Saddle points 

https://www.youtube.com/watch?v=8aAU4r_pUUU  

   

multivariate functions can have saddle points 

 

points at which the tangent (derivative) is 0 but they 

are neither minima nor maxima.  

 

For example  

f(x,y)=x2-y2   

 

 

https://www.youtube.com/watch?v=8aAU4r_pUUU
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