
React

Tips
• ReactDom.Render function renders a react element inside an html element

• You can embed any JavaScript expression (a valid unit of code that resolves to a value) in JSX by wrapping it in curly braces.

• When the state (or the props) changes the component responds by re-rendering.

• When a parent component is rendered, its children components are rendered too.

• React components don’t modify their props. The React philosophy is that props should be immutable and top-down.

• Only class based components can have a state

• If you want to have an action occur on a child which modifies something on the parent’s state, then what you do is pass a

callback to the child which it can execute upon the given action. This callback can then modify the parent's state, which in turn

sends different props to the child on re-render (and the child id re-rendered if props changed).

• The state is not persistent, it is flushed if the page reloads. For persistent storage you can use: Cookies (Persistent cookies or

session cookies) Web storage

• Context provides a way to pass data through the component tree without having to pass props down manually at every level.

Whenever the value of the context changes, the subscribed components are rendered. Context is designed to share data that

can be considered “global” for a tree of React components, such as the current authenticated user, theme, or preferred

language. Apply it sparingly because it makes component reuse more difficult

A GOOD WAY FoR COMPARING the use of libraries is to get the npm downloads history from npm-stat.com for example. In 2018

react is far ahead from Vue and angular (despite the fact that vue has more github stars - that mainly measure hype).

React for everything

There is also react native for mobile, react for VR, react for TVOS soon etc. I have built apps with lots of code reuse on native and

web. Abstract all data logic and you can use the exact same code for both apps. This of course does not include your view layer.

If you do it correctly, all you have to do is make a new set of view components. Stateless ones. Because you are injecting the state

from your non platform specific components.

It makes it extremely fast to build for other platforms. It just takes a few apps to fully understand how to abstract these things

perfectly.

The model data in React is represented by props and state. A change to each of those, triggers a re-rendering.

In React, when a component’s state changes, it triggers the re-render of the entire component sub-tree, starting at that

component as root. To avoid unnecessary re-renders of child components, you need to either use PureComponent or implement

shouldComponentUpdate whenever you can. If the shouldComponentUpdate method returns false the component will not be

updated.

The virtual dom is composed of react elements.

Babel compiles JSX down to React.createElement() calls which creates an object called React Element

composition

⚫ Many components of our app can have the following behaviour: On mount, add a change listener to DataSource. Inside the

listener, call setState whenever the data source changes. On unmount, remove the change listener. We implement this with

HOC. Error boundaries also with HOC. But you can use custom hooks instead.

⚫ Components with some common elements can be created with a common component and props.children

⚫ Template blocks like functionality can be implemented with props.sidebar where sidebar renders a component (sidebar is

an example could be anything like props.left)

In React, all DOM properties and attributes (including event handlers) should be camelCased. For example, the HTML attribute

tabindex corresponds to the attribute tabIndex in React. The exception is aria-* and data-* attributes, which should be

lowercased.

Unless you spread components out over multiple files (for example with CSS Modules), scoping CSS in React is often done via

CSS-in-JS solutions (e.g. styled-components, glamorous, and emotion)

The virtual DOM (VDOM) is a programming concept where an ideal, or “virtual”, representation of a UI is kept in memory and

synced with the “real” DOM by a library such as ReactDOM. This process is called reconciliation.

When something changes in your app (for example the state of a component) the whole virtual DOM is created from scratch, not

just the changed component. Then React diffs it with the previous one, and apply only the differences to the browser DOM. The

virtual DOM is very fast.

You can see the actual virtual DOM in the browser’s developer tools using a plugin. When you see something wrong in the UI,

you can use React Developer Tools to inspect the props and move up the tree until you find the component responsible for

updating the state. This lets you trace the bugs to their source

If you reorder some sibling nodes of a component, react will not recreate them since they exist, it will just reorder the existing

instances. This makes it very fast.

React, also uses internal objects called “fibers” to hold additional information about the component tree. Fiber is the new

reconciliation engine in React 16. Its main goal is to enable incremental rendering of the virtual DOM.

With Perf.start and Perf.end react prints in the console various information about the rendered components.

render() returns a reference to the component or null for stateless components. However, using this return value is legacy and

should be avoided because future versions of React may render components asynchronously in some cases. If you need a

reference to the root ReactComponent instance, the preferred solution is to attach a callback ref to the root element.

ReactDOMServer

This object can be used to render components to static markup. For example the ReactDOMServer.renderToString(element) will

render a React element to its initial HTML. React will return an HTML string. You can use this method to generate HTML on the

server (if you use node.js) and send the markup down on the initial request for faster page loads and to allow search engines to

crawl your pages for SEO purposes. For server rendered components you can use ReactDOM.hydrate() instead of

ReactDOM.render(). This will preserve the existing markup and only attach event handlers, allowing you to have a very fast first-

load experience. render may change your node if there is a difference between the initial DOM and the current DOM. hydrate

will only attach event handlers

With React, typically you only need to bind the methods you pass to other components.

This is because In JavaScript, these two code snippets are not
equivalent (probably it means that the “this” would be
different):
obj.method();

var method = obj.method;method();

Binding methods helps ensure that the second snippet works
the same way as the first one.

As your app grows, you can catch a lot of bugs with typechecking. For some applications, you can use JavaScript extensions like

Flow or TypeScript to typecheck your whole application. But even if you don’t use those, React has some built-in typechecking

abilities. To run typechecking on the props for a component, you can assign the special propTypes property. We recommend

using Flow or TypeScript instead of PropTypes for larger code bases.

Keep in your source control only the source js files (ES6 etc). Generally, you don’t want to keep the generated javascript in your

source control, so be sure to add the build folder to your .gitignore.

There are javascript error reporting services. When you catch an error in your js code you can pass it to this service. It can also

listen for uncaught error. Then you have an error report.

Create-react-app library. Using it You don’t need to install or configure tools like Webpack or Babel. They are preconfigured and

hidden so that you can focus on the code.

React is unaware of changes made to the DOM outside of React. It determines updates based on its own internal representation,

and if the same DOM nodes are manipulated by another library, React gets confused and has no way to recover. The easiest way

to avoid conflicts is to prevent the React component from updating. You can do this by rendering elements that React has no

reason to update, like an empty <div />. The <div /> element has no properties or children, so React has no reason to update it,

leaving the jQuery plugin free to manage that part of the DOM

Code splitting: To avoid winding up with a large bundle, it’s good to get ahead of the problem and start “splitting” your bundle.

Code-Splitting is a feature supported by bundlers like Webpack and Browserify. Code-splitting your app can help you “lazy-load”

just the things that are currently needed by the user, which can dramatically improve the performance of your app.

const { extraProp, ...passThroughProps } = this.props; ???

How to think when building a react app:

⚫ You have the data model (for example a json string from an API) you want to represent with an UI.

⚫ You have a mockup of the UI

⚫ You separate the UI to components and create their hierarchy

⚫ You create a static version of the UI, without any interactivity (so no state). This way you don’t have to think a lot on this

stage. You create the components bottom up (for big projects) or top-bottom (for small ones). The parent component

receives the data and passes it properly to its children through props. If you get an alternative data model and execute

React.render to the parent, the UI will be updated.

⚫ Identify the minimal state of your UI. For example, if you’re building a TODO list, just keep an array of the TODO items

around; don’t keep a separate state variable for the count.

1. Is it passed in from a parent via props? If so, it probably isn’t state.

2. Does it remain unchanged over time? If so, it probably isn’t state.

3. Can you compute it based on any other state or props in your component? If so, it isn’t state.

⚫ Decide which components would own the state (and pass it as props to its descendants).

1. Identify every component that renders something based on that state.

2. Find a common owner component (a single component above all the components that need the state in the hierarchy).

3. Either the common owner or another component higher up in the hierarchy should own the state.

4. If you can’t find a component where it makes sense to own the state, create a new component simply for holding the

state and add it somewhere in the hierarchy above the common owner component.

JSX
const element = <h1>Hello, world!</h1>;

This funny tag syntax is neither a string nor HTML. It is called JSX, and it is a syntax extension to JavaScript. We recommend

using it with React to describe what the UI should look like. JSX may remind you of a template language, but it comes with the

full power of JavaScript.

const user = {

 firstName: 'Harper',

 lastName: 'Perez'

};

Or
const element = (

 <h1> Hello, {formatName(user)}! </h1>);

You can embed any JavaScript expression (a valid unit of code
that resolves to a value) in JSX by wrapping it in curly braces.

Notice that while it isn’t required, when doing this, we also
recommend wrapping it in parentheses to avoid the pitfalls of
automatic semicolon insertion.

You may use quotes to specify string literals as attributes: const element = <div tabIndex="0"></div>;

You may also use curly braces to embed a JavaScript expression in an attribute: const element = ;

If a tag is empty, you may close it immediately with />, like XML

const title = response.potentiallyMaliciousInput;

// This is safe:

const element = <h1>{title}</h1>;

By default, React DOM escapes any values embedded in JSX
before rendering them. Thus it ensures that you can never inject
anything that’s not explicitly written in your application.
Everything is converted to a string before being rendered. This
helps prevent XSS (cross-site-scripting) attacks.

After compilation, JSX expressions become regular JavaScript function calls and evaluate to JavaScript objects. This means that

you can use JSX inside of if statements and for loops, assign it to variables, accept it as arguments, and return it from functions

JSX maps to function calls

return <node> something </node> This jsx is actually this: return node(something)

The <node> tag is a function and the tag’s contents are the function’s arguments. This means that the tag’s contents must be of

a type that can be passed as argument to a function.

This will give an error since it is not valid JSX
render(){

return(

<tbody>

 for (var i=0; i < numrows; i++) {

 <ObjectRow/>

}

</tbody>

)}

It is as if you do something like this: The <tbody> node is mapped to a function call.
return tbody(

 for (var i = 0; i < numrows; i++) {

 ObjectRow()

 })

Which is not valid javascript.

You can solve this by creating an array from the for loop and passing it as an argument to the function.
Since the returned jsx object is a function, you can pass whatever arguments you want to it. It would
result in something like this:
var rows = [];

for (var i = 0; i < numrows; i++) {

 // note: we add a key prop here to allow react to uniquely identify each

 // element in this array. see: https://reactjs.org/docs/lists-and-keys.html

rows.push(<ObjectRow key={i} />);

}

return <tbody>{rows}</tbody>;

Which results to this:
var rows = [];

for (var i = 0; i < numrows; i++) {

rows.push(ObjectRow());}

return tbody(rows);

In general the map function is preferred:
return <tbody>

 {items.map(item => <ObjectRow key={item.id} name={item.name} />)}

</tbody>

React elements
Unlike browser DOM elements, React elements are plain objects, and are cheap to create.

// jsx

const element = (

 <h1 className="greeting">

 Hello, world!

 </h1>);

//transpiled to this

const element = React.createElement(

 'h1',

 {className: 'greeting'},

 'Hello, world!');

Babel compiles JSX down to React.createElement() calls
which creates an object called React Element. React
elements construct the React DOM that takes care of updating
the browser DOM to match the React elements.

React.createElement() performs a few checks to help you write
bug-free code but essentially it creates an object. These objects
are called “React elements”. They are the smallest building
blocks of React apps. Components are made of react elements.

// which creates this object (which is a react element).

// Note: this structure is simplified

const element = {

 type: 'h1',

 props: {

 className: 'greeting',

 children: 'Hello, world'

 }};

React elements are immutable. Once you create an element, you
can’t change its children or attributes. An element is like a single
frame in a movie: it represents the UI at a certain point in time.

const element = <h1>Hello, world</h1>;

ReactDOM.render(

 element,

 document.getElementById('root')

);

Or
function App() {

 return (

 <div> <Welcome name="Sara" /></div>

);}

ReactDOM.render(

 <App />, // this is how you call it if it is not a variable like before

 document.getElementById('root'));

Root Nodes
Everything inside it will be managed by React DOM. You may
have as many isolated root DOM nodes as you like. To render a
React element into a root DOM node, pass both to
ReactDOM.render()

reactDOM renders a react element inside an html node (the
node with id=root in this case). The App is a function that
returns a jsx syntax which is transpiled to a react element.

When the render function is called again, a new react element will be created and if the new element that is produced has some

differences with the existing element, React will update the browser DOM with the differences. Only the differences. So the

concept is that you don’t think how to change the UI, but rather how it should look at any given moment.

You could set a time interval and call the render function that will update the DOM. This is not how we normally update the DOM

with react.

Components
A react component is a javascript function that accepts an object argument called props and returns a React element

which describes what should appear in the UI. They accept arbitrary inputs (called “props”) and return a React element

describing what should appear on the screen. They are function based or class based.

const element = <Welcome name="Sara" />;

Welcome is a react component.
When React sees an element representing a user-defined component, it passes JSX
attributes (here name=’Sara’) to this component as a single object called
“props”, here props={name: ‘Sara’}
<Welcome name=”Sara”><User /></Welcome> in this example the User component
can be accessed within the Welcome component with props.children.

Components can refer to other components in their output.

Class and Function based components

Typically, new React apps have a single App component at the very top. However, if you integrate React into an existing app, you

might start bottom-up with a small component like Button and gradually work your way to the top of the view hierarchy.

A good rule of thumb is that if a part of your UI is used several times (Button, Panel, Avatar), or is complex enough on

its own (App, FeedStory, Comment), it is a good candidate to be a reusable component. Don’t be afraid to split components

to smaller ones. One technique is the single responsibility principle, that is, a component should ideally only do one thing.

All React components must act like pure functions with respect to their props. Pure functions do not modify their inputs and so

props must not be modified by the component’s code. Therefore components have their own state apart from props. If they

want to modify their output they modify their state, not their input. Components State allows React components to change

their output over time in response to user actions, network responses, and anything else, without violating this rule.

Conditional Rendering

You can normally use if blocks in JSX of course, but there are also some tips to type less code for them. For example:

<div>
 <h1>Hello!</h1>
 {unreadMessages.length > 0 &&
 <h2>
 You have {unreadMessages.length} unread messages.
 </h2>
 }
 </div>

Inline if with logical && operator
It works because in JavaScript, true && expression always
evaluates to expression, and false && expression always
evaluates to false

If the render function returns null then the component is not rendered. You can use this with conditional statements if you want.

Notice that returning null in render, does not affect the firing of the component’s lifecycle methods. For instance,

componentWillUpdate and componentDidUpdate will still be called.

Lists and Keys

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>

<li key={number.toString()}>{number});

ReactDOM.render(
{listItems},
document.getElementById('root'));

Common way of rendering multiple components: using the map
function.

All item elements of a list in React must have a unique key attribute, unique among its siblings. Keys help React identify which

items have changed, are added, or are removed. The best way to pick a key is to use a string that uniquely identifies a list item

among its siblings. Most of the time you will use an id that come with your data. You might use an index of the loop but is not

recommended since it might cause issues to the components state if there is a reordering.

function ListItem(props) {

 const value = props.value;

 return (// Wrong! There is no need to specify the key here:

<li key={value.toString()}> {value}

);}

function NumberList(props) {

 const numbers = props.numbers;

 const listItems = numbers.map((number) =>

// Wrong! The key should have been specified here:

<ListItem value={number} />);

 return (

 {listItems}

);}

const numbers = [1, 2, 3, 4, 5];

ReactDOM.render(

 <NumberList numbers={numbers} />,

 document.getElementById('root'));

Notice:
Keys only make sense in the context of the
surrounding array.

Notice: Keys are not passed to Components. Here
for example key will not be available in the props
object of the Post component.
const content = posts.map((post) =>
 <Post
 key={post.id}

id={post.id}
title={post.title} />);

function Post(props){
 // there is no props.key

const id = props.id
const title = props.title
…

};

Fragments

Notice: The render method can only render a single root html node that contains the other html nodes. From react v16 you can

use the Fragments node to return more than one nodes. Actually what you do is to group a list of children together.

A common pattern in React is for a component to return multiple elements. Fragments let you group a list of children without

adding extra nodes to the DOM.

The empty tag is shorthand for <React.Fragment>

class Table extends React.Component {

 render() {

 return (

 <table>

 <tr>

 <Columns /> // this component wants to return many nodes

 </tr>

 </table>

);

 }}

// the Columns

render() {

 return (

 <React.Fragment>

 <td/>

Render many html nodes using Fragments.

Notice:
If you want to return an array of fragments you must define
keys for the React.Fragment nodes.

function Glossary(props) {

 return (

 <dl>

 {props.items.map(item => (

 // Without the `key`, React will fire a key warning

 <React.Fragment key={item.id}>

 <dt>{item.term}</dt>

 <dd>{item.description}</dd>

 </React.Fragment>

))}

https://reactjs.org/docs/fragments.html

 <td/>

 <td/>

 </React.Fragment>

);}

 </dl>

);}

Portals

Normally the rendered node that is returned from a render method, is mounted into the nearest parent node. Using portals you

can mount the rendered node to any existing node in the DOM.

render() {

 // React does *not* create a new div. It renders the children into `domNode`.

 // `domNode` is any valid DOM node, regardless of its location in the DOM.

 return ReactDOM.createPortal(

this.props.children,

 domNode,

);

}

A typical use case for portals is when a parent
component has an overflow: hidden or z-index style,
but you need the child to visually “break out” of its
container. For example, dialogs, hovercards, and
tooltips.

Notice
The portal still exists in the React tree regardless of
position in the DOM tree. This includes event bubbling.
An event fired from inside a portal will propagate to
ancestors in the containing React tree, even if those
elements are not ancestors in the DOM tree.

Lifecycle methods

Have in mind that componentDidUpdate(prevProps, prevState) gets two optional arguments

State
React has stateless and stateful components. Class defined components can have a state available to them while function

defined components can’t. This state is local (or encapsulated). It is not accessible to any component other than the one that

owns and sets it. No other component can and should know if a certain component is stateless or not. The state is like props,

but it is private and fully controlled by the component. If you don’t use something in render(), it shouldn’t be in the state. React

will preserve this state between re-renders.

⚫ props are passed from a parent component, but state is managed by the component itself. The most important difference

between state and props

⚫ A component cannot change its props, but it can change its state.

⚫ Components should only update their own state.

When the state (or the props) changes the component responds by re-rendering. (If the props changes the component also

responds with re-rendering, but props must not change by the component’s code)

For each particular piece of changing data, there should be just one component that “owns” it in its state. Don’t try to synchronize

states of two different components. Instead, lift it up to their closest shared ancestor, and pass it down as props to both of them.

The React philosophy is that props should be immutable and top-down. This means that a parent can send whatever prop values

it likes to a child, but the child cannot modify its own props. What you do is react to the incoming props and then, if you want to,

modify your child's state based on incoming props.

So you don't ever update your own props, or a parent's props. Ever. You only ever update your own state, and react to prop

values you are given by parent.

If you want to have an action occur on a child which modifies something on the parent’s state, then what you do is pass a callback

to the child which it can execute upon the given action. This callback can then modify the parent's state, which in turn sends

different props to the child on re-render (and the child id re-rendered if props changed).

To answer the question of why

In React, props flow downward, from parent to child. This means that when we call ReactDOM.render, React can render the root

node, pass down any props, and then forget about that node. It's done with it. It's already rendered. This happens at each

component, we render it, then move on down the tree, depth-first. If a component could mutate its props, we would be changing

an object that is accessible to the parent node, even after the parent node had already rendered. This could cause all sorts of

strange behaviour, for example, a user.name might have one value in one part of the app, and a different value in a different part,

and it might update itself the next time a render is triggered.

Modifying Props would be two-way-binding. Mutating props would be a form of two-way binding. We would be modifying values

that might be relied on by another component higher up the tree. Angular 1 had this, you could change any data anytime from

wherever you were. In order to work, it needed a cyclical $digest. Basically, it would loop around and around, re-rendering the

DOM, until all the data had finished propagating. This was part of the reason why Angular 1 was so slow.

The state is not persistent, it is flushed if the page reloads. For persistent storage you can use:

⚫ Cookies (Persistent cookies or session cookies)

⚫ Web storage

See cookies vs web storage (web storage offers a lot of advantages)

Lifecycle hooks

componentDidMount and componentWillUnmount methods of a class component are called after the component output has

been rendered to the DOM and before it is removed respectively.

While this.props is set up by React itself and this.state has a special meaning, you are free to add additional fields to the class

manually if you need to store something that is not used for the visual output. So you can do this.my_var = whatever.

Sequence of actions explained

class Clock extends React.Component {

 constructor(props) {

 super(props);

 this.state = {date: new Date()};

 }

 componentDidMount() {

 this.timerID = setInterval(

 () => this.tick(),

 1000

);

 }

 componentWillUnmount() {

 clearInterval(this.timerID);

 }

 tick() {

 this.setState({ date: new Date() });

1. When <Clock /> is passed to ReactDOM.render(), React calls

the constructor of the Clock component. Since Clock needs to

display the current time, it initializes this.state with an object

including the current time. We will later update this state.

2. React then calls the Clock component’s render() method. This

is how React learns what should be displayed on the screen.

React then updates the DOM to match the Clock’s render

output.

3. When the Clock output is inserted in the DOM, React calls the

componentDidMount() lifecycle hook. Inside it, the Clock

component asks the browser to set up a timer to call the

component’s tick() method once a second.

4. Every second the browser calls the tick() method. Inside it, the

Clock component schedules a UI update by calling setState()

}

 render() {

 return (

 <div>

 <h1>Hello, world!</h1>

 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>

 </div>

);

 }}

ReactDOM.render(

 <Clock />,

 document.getElementById('root'));

with an object containing the current time. Thanks to the

setState() call, React knows the state has changed, and calls

render() method again to learn what should be on the screen.

This time, this.state.date in the render() method will be

different, and so the render output will include the updated

time. React updates the DOM accordingly.

5. If the Clock component is ever removed from the DOM, React

calls the componentWillUnmount() lifecycle hook so the timer

is stopped.

The setState function updates the state. It does so by shallow merging the state object with the object that is returned by the

setState function. It has two forms. One that accepts an object as argument and one that accepts a function (that returns an

object). The first form is suitable for explicitly defining some state attributes. The second one is suitable for updating the state

by accessing the previous state too if needed.

Notice about the state

1. don’t modify the state directly

// Wrong

this.state.comment = 'Hello';

// Correct

this.setState({comment: 'Hello'});

You must not modify the state directly for example by doing
this.state.comment = ‘Hello’ . This will not trigger the render
action! Instead use setState() function

1. State Updates May Be Asynchronous

That’s why you need to call setState with a function that has prevState as an argument, if you want to access the previous state.

// Wrong

this.setState({

 counter: this.state.counter + this.props.increment,});

// Correct

this.setState((prevState, props) => ({

 counter: prevState.counter + props.increment}));

// Correct

this.setState(function(prevState, props) {

 return {

 counter: prevState.counter + props.increment

 };});

React may batch multiple setState() calls into a single update
for performance.

In the wrong case you are not sure if this.state.counter is the
correct value (the last updated value). Since its update is
asynchronous it might have not been updated yet.

So instead you must use the setState with a function as an
argument. Either arrow function or a regular function. A
function that returns an object.

Why a function, how does it make a difference? Since setState calls are batched, this lets you chain updates and ensure they build
on top of each other instead of conflicting

Probably it is stored in a queue and is executed with the proper order. Maybe it has something to do with the redux concept of
modifying the state with actions that are functions. But this state here is a local state, specific to this component while for redux
it is the global state, of all components and an action can affect many components.

3. State updates are shallow merged

The state is an object. When you want to update it, your action (function) returns an object that is merged with the state. It is a

shallow merge (In a shallow merge, the properties of the first object are overwritten with the same property values of the

second object).

Unidirectional data flow
One way binding or Unidirectional data flow

Components can’t modify their props (which might affect the output of parent components). props only flow in one way, top down.
This way you don’t have to deal again with a component that has already rendered.

A component may choose to pass its state down as props to its child components: <FormattedDate date={this.state.date} />

The FormattedDate component would receive the date in its props and wouldn’t know whether it came from the Clock’s state,

from the Clock’s props, or was typed by hand. This is commonly called a “top-down” or “unidirectional” data flow. Any state is

always owned by some specific component, and any data or UI derived from that state can only affect components “below” them

in the tree. If you imagine a component tree as a waterfall of props, each component’s state is like an additional water source

that joins it at an arbitrary point but also flows down.

This means that the state or the UI of a component can only affect child components.

Inverse data flow

The children can modify the state of their parent indirectly using callbacks. React makes this data flow explicit to make it easy

to understand how your program works, but it does require a little more typing than traditional two-way data binding. This is

done like this: The parent passes some callbacks to the children. These callbacks modify the parent’s state. They are methods of

the Parent component. When the children want to modify the state they execute these callbacks that have been passed to them

as props.

Event handling
// html

<button onclick="activateLasers()">Activate Lasers</button>

// jsx

<button onClick={activateLasers}> Activate Lasers</button>

Vs html syntax
With JSX you pass a function as the event handler, rather than
a string.
You cannot return false to prevent default behavior in React.
You must call preventDefault explicitly.

Synthetic Event

React uses a cross browser wrapper of the browser’s native event object, called SyntheticEvent.

With the nativeEvent attribute of the syntheticEvent you can access the underlying browser event.

The SyntheticEvent is pooled for performance (from v17 on, SyntheticEvent is not pooled). Pooling means that when the event

callback has been invoked, the same event instance will be reused and for that reason its attributes will be nullified. So you

must not access it asynchronously since it will not be the same event.

Normally you add an event listener to an element that already exists in the DOM. In react you can just provide the event

listener when the element is initially rendered (it is added the first time the element is rendered).

Event bubbling vs Event Capturing

Event bubbling and capturing are two ways of event propagation in the HTML DOM API, when an event occurs in an element

inside another element, and both elements have registered a handle for that event. The event propagation mode determines in

which order the elements receive the event.

⚫ With bubbling, the event is first captured and handled by the innermost element and then propagated to outer elements.

⚫ With capturing, the event is first captured by the outermost element and propagated to the inner elements

You can explicitly define which mode you want to use. By default bubbling is used. To register an event handler for the capture

phase, append Capture to the event name.

Bind

class Toggle extends React.Component {
 constructor(props) {
 super(props);
 this.state = {isToggleOn: true};

// This binding is necessary to make `this` work in the callback
this.handleClick = this.handleClick.bind(this);
}

 handleClick() {
 this.setState (

prevState => ({ isToggleOn: !prevState.isToggleOn })
);

 }

 render() {

return (
 <button onClick={this.handleClick}>
 {this.state.isToggleOn ? 'ON' : 'OFF'}

 </button>
);
 }}

ReactDOM.render(
 <Toggle />,
 document.getElementById('root'));

In JavaScript, class methods are not bound by default. So you
have to bind them in order to use this when the function is
actually called.. This is not React-specific behavior; it is a part
of how functions work in JavaScript.

Generally, if you refer to a method without () after it, such as
onClick={this.handleClick}, you should bind that method.

Arrow function expressions preserve this, so you need to
bind the event handlers, only when you are not using arrows.

// If you want to avoid using bind
class LoggingButton extends React.Component {
 handleClick() {
 console.log('this is:', this);
 }

 render() {
 // This syntax ensures `this` is bound within handleClick
return (

<button onClick={(e) => this.handleClick(e)}> Click me
 </button>
);
 }}

Here an arrow function expression invokes the function and
preserves this, so this way there is no need to bind the
method.

Passing additional arguments to event handlers

<button onClick={(e) => this.deleteRow(id, e)}>Delete Row</button>

<button onClick={this.deleteRow.bind(this, id)}>Delete Row</button>

Either of these would work, but the second doesn’t
preserve this inside the deleteRow function. In this

 case if you need this, you have to bind the deleteRow
method in the class constructor.

class Toggle extends React.Component {
 constructor(props) {
 super(props);

 this.state = {isToggleOn: true};
}

 handleClick(id, e) {
 ….
 }

 render() {return (
<button onClick={(e) => this.handleClick(id, e)}> Click me </button>
); }}

The dataset property

 handleClick(e) {
 this.setState({
 justClicked: e.target.dataset.letter
 });
 }

// somewhere in the render function
<li key={letter} data-letter={letter} onClick={this.handleClick}>
 {letter}

You use the data-my-var-name html attribute

Notice that we use the dataset property to get the
data- attributes.

Have in mind that you can prevent a function from being called too quickly or too many times in a row (for example onScroll

event handlers) using either throttling (Throttling prevents a function from being called more than once in a given window of

time.)

When testing your rate limiting code works correctly it is helpful to have the ability to fast forward time.

Forms
Controlled components

Form inputs are stored in React state which is the “single source of truth”. The form input controls the react state which controls

the components rendering. This is a controlled component. Controlled by the form’s input.

An HTML form has the behavior of browsing to a new page when the user submits the form. If you want this behavior in React,

it just works. But in most cases, it’s convenient to have a JavaScript function that handles the submission of the form and has

access to the data that the user entered into the form. The standard way to achieve this is with a technique called “controlled

components”.

In HTML, form elements such as <input>, <textarea>, and <select> typically maintain their own state and update it based on

user input. (for example when you type in an input field the text is appended, it doesn’t replace the existing text). In React,

mutable state is typically kept in the state property of components, and only updated with setState().

We can combine the two by making the React state be the “single source of truth”. Then the React component that renders a

form also controls what happens in that form on subsequent user input. An input form element whose value is controlled by

React in this way is called a “controlled component”.

Textarea: In React, a <textarea> uses a value attribute to define the text while in html the text is the child text of the textarea

element.

Select: In React the selected value is not defined with the selected attribute as in html, but by defining a value attribute in the

select element.

In the following example we just make the reservation component’s state, the single source of truth for the form. There is no

code for handling the submission of the form. The point is that whatever we do in the form, is reflected in the component’s state.

To do so, you have to create a new method which will be a submit listener and would get the form values from the component’s

state.

class Reservation extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 isGoing: true,

 numberOfGuests: 2

 };

 this.handleInputChange = this.handleInputChange.bind(this);

 }

 handleInputChange(event) {

 const target = event.target;

const value = target.type === 'checkbox' ? target.checked : target.value;

const name = target.name;

this.setState({

 [name]: value }); // this is ES6 computed property name syntax

 }

 render() {

 return (

 <form>

 <label>

 Is going:

 <input

 name="isGoing"

 type="checkbox"

 checked={this.state.isGoing}

 onChange={this.handleInputChange} />

 </label>

 <label>

 Number of guests:

 <input

 name="numberOfGuests"

 type="number"

 value={this.state.numberOfGuests}

 onChange={this.handleInputChange} />

 </label>

 </form>

);

Overall, this makes it so that <input type="text">,
<textarea>, and <select> all work very similarly - they all
accept a value attribute that you can use to implement a
controlled component.

To select multiple options in a select:
<select multiple={true} value={['B', 'C']}>

Multiple input elements in one form
When you need to handle multiple controlled input
elements (with the same submit handler since it is one
form), you can add a name attribute to each element and
let the handler function choose what to do based on the
value of event.target.name.

If a controlled component has taken a value then it is not
editable anymore by the browser. You can make it so, if
you define its value as {null}

or

 }}

when we have a form, we want each input to be part of the state of the component. This is the controlled component.

If we want to clear the input after a form submission, we do a this.setState({input_field_1: “”, input_field_2: “”, etc.})

Notice that this is the component’s state, not the redux global state.

Uncontrolled components

They are based in React Refs. You get a reference to the input DOM element, you take its value and use this value to submit the

form instead of using the components state value.

In a controlled component, form data is handled by a React component’s state. The alternative is uncontrolled components,

where form data is handled by the DOM itself. Since an uncontrolled component keeps the source of truth in the DOM, it is

sometimes easier to integrate React and non-React code when using uncontrolled components. Using uncontrolled components

might be easier to implement, when you are converting a preexisting codebase to React.

Refs
React supports a special attribute that you can attach to any component. The ref attribute can be an object created by

React.createRef() function or a callback function, or a string (in legacy API). When the ref attribute is a callback function, the

function receives the underlying DOM element or class instance (depending on the type of element) as its argument. This allows

you to have direct access to the DOM element or component instance.

Use refs sparingly. If you find yourself often using refs to “make things happen” in your app, consider getting more familiar with

top-down data flow.

class MyComponent extends React.Component {
 constructor(props) {

super(props);
this.myRef = React.createRef();

}
 render() {

return <div ref={this.myRef} />; }
}

It is a special React attribute. The ref attribute takes a callback function, and
the callback will be executed immediately after the component is mounted or
unmounted. When the ref attribute is used on an HTML element, the ref
callback receives the underlying DOM element as its argument. This way you
can access the underlying browser DOM element and use it.
So, I guess that this.myRef references the div node and you can use it in your
component as this.myRef. In this example there is no further use of it.
You can also use ReactDOMServer.findDOMNode but ref is preferable.

forwardRef

me: we use the forwardRef to define a function component, so that it receives an attribute called ref (that references a DOM

node), and use it in our code.

In the example below, FancyButton uses React.forwardRef to obtain
the ref passed to it, and then forward it to the DOM button that it
renders.
Notice that this way we can get a reference to the button in
another part of the code using the createRef() function. Here the
ref variable refers to the actual button element.
This way, components using FancyButton can get a ref to the
underlying button DOM node and access it if necessary—just like if
they used a DOM button directly.

Lifting state up
In React, sharing state is accomplished by moving it up to the closest common ancestor of the components that need it and

passing it down as props. This is called “lifting state up”.

In this case for example, the TemperatureInput components are children of the Calculator component. If we want them to “share”

some state, then we put this state in the Calculator and pass it to its children components as props. This is the “lifting state up”

concept. There should be a single “source of truth” for any data that changes in a React application.

const scaleNames = { c: 'Celsius', f: 'Fahrenheit'};

class TemperatureInput extends React.Component {
 constructor(props) {
 super(props);
 this.handleChange = this.handleChange.bind(this);
 }

 handleChange(e) {
 this.props.onTemperatureChange(e.target.value); }

 render() {

const temperature = this.props.temperature;
const scale = this.props.scale;

 return (
 <fieldset>
 <legend>Enter temperature in {scaleNames[scale]}:</legend>
 <input value={temperature}
 onChange={this.handleChange} />
 </fieldset>
);
 }}

class Calculator extends React.Component {
 constructor(props) {
 super(props);
 this.handleCelsiusChange = this.handleCelsiusChange.bind(this);

this.handleFahrenheitChange = this.handleFahrenheitChange.bind(this);
this.state = {temperature: '', scale: 'c'}; }

 handleCelsiusChange(temperature) {
 this.setState({scale: 'c', temperature}); }

 handleFahrenheitChange(temperature) {
 this.setState({scale: 'f', temperature}); }

 render() {

const scale = this.state.scale;
const temperature = this.state.temperature;
const celsius = scale === 'f' ?

tryConvert(temperature, toCelsius) : temperature;
const fahrenheit = scale === 'c' ?

tryConvert(temperature, toFahrenheit) : temperature;
 return (
 <div>

We have 2 input elements, one for Celcius and one for
Fahrenheit and we want them to be in sync. This is
achieved by using a common state, the state of their
parent.

Inverse data flow
Notice that the onChange handler is provided as a
callback by the parent (as props), since this
callback modifies the state which is owned by the
parent. The attributes (input values) of the callback
though are given from the child.
function toCelsius(fahrenheit) {
 return (fahrenheit - 32) * 5 / 9;}

function toFahrenheit(celsius) {
 return (celsius * 9 / 5) + 32;}

function tryConvert(temperature, convert) {
 const input = parseFloat(temperature);
 if (Number.isNaN(input)) {
 return '';
 }
 const output = convert(input);
 const rounded = Math.round(output * 1000) / 1000;
 return rounded.toString();}

function BoilingVerdict(props) {
 if (props.celsius >= 100) {

return <p>The water would boil.</p>;
}
 return <p>The water would not boil.</p>;

}

Usually, the state is first added to the component that
needs it for rendering. Then, if other components also
need it, you can lift it up to their closest common
ancestor.

If something can be derived from either props or
state, it probably shouldn’t be in the state.

 <TemperatureInput
 scale="c"
 temperature={celsius}
 onTemperatureChange={this.handleCelsiusChange} />
 <TemperatureInput
 scale="f"
 temperature={fahrenheit}
 onTemperatureChange={this.handleFahrenheitChange} />
 <BoilingVerdict celsius={parseFloat(celsius)} />
 </div>
);
 }}

Composition
In general react favors composition instead of inheritance for its components. They haven’t find a use case that inheritance

would be necessary. Components may accept arbitrary props, including primitive values, React elements, or functions. If you

want to reuse non-UI functionality between components, we suggest extracting it into a separate JavaScript module. The

components may import it and use that function, object, or a class, without extending it.

Containment (props.children)

The specialized component is the parent of the generic one and it defines the contents of the generic one as children elements.

The generic component access them with props.children. Unlike the other props which are the attributes passed to the used

component, the props.children are any components that the used component wraps.

Replacing this With this

The concept is that we create a more generic Card component that doesn’t know its children beforehand. They are passed to it

by the more specialized components AlbumCard and SongCard. This is composition. In an inheritance model the specialized

components would inherit from the generic one.

function FancyBorder(props) {

 return (

<div className={'FancyBorder FancyBorder-' + props.color}>

 {props.children}

</div>

);}

function WelcomeDialog() {

 return (

<FancyBorder color="blue">

 <h1 className="Dialog-title"> Welcome </h1>

 <p className="Dialog-message">

 Thank you for visiting our spacecraft! </p>

 </FancyBorder>

);}

props.children
You can have some components that don’t know their children
components ahead of time. This is especially common for
components like Sidebar or Dialog that represent generic
“boxes”. In these cases you can use props.children, a special
props attribute.

Whatever is inside the FancyBorder tag, is passed as
props.children to the FancyBorder container.

function SplitPane(props) {

 return (

 <div className="SplitPane">

 <div className="SplitPane-left">

Template Blocks like functionality
React elements like <Contacts /> and <Chat /> are just objects,
so you can pass them as props like any other data.

 {props.left} </div>

 <div className="SplitPane-right">

 {props.right} </div>

 </div>

);}

function App() {

 return (

 <SplitPane

 left={ <Contacts /> }

 right={ <Chat /> } />

);}

Specialization

Sometimes we think about components as being “special cases” of other components. For example, we might say that a

WelcomeDialog is a special case of Dialog. You can pass the contents of a component, for example the title and message texts, as

props and reuse this component with different messages and titles.

Higher Order components

A higher order component (HOC) is a function that takes a component and returns a new component. HOCs are common in third-

party React libraries, such as Redux’s connect and Relay’s createFragmentContainer.

The concept is that we have some logic (usually non visual logic) that we want to share between various components. Instead

of copy pasting code we create a wrapper component that contains the logic and wrap the components with it. The common

logic lives in the wrapper component and becomes available as props in the wrapped components. The wrapped components

accept the shared logic as props because the wrapper renders them.

In this example Datasource is a service (a 3rd part app, our API etc) that we listen to, for changes in data used by the client.

// This function takes a component…

function withSubscription(WrappedComponent, selectData) {

 // ...and returns another component...

 return class extends React.Component {

 constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bind(this);

 this.state = {

 data: selectData(DataSource, props)

 };

 }

 componentDidMount() {

 // ... that takes care of the subscription...

 DataSource.addChangeListener(this.handleChange);

 }

 componentWillUnmount() {

 DataSource.removeChangeListener(this.handleChange);

 }

 handleChange() {

 this.setState({

 data: selectData(DataSource, this.props)

Many components of our app can have the following
behaviour:
⚫ On mount, add a change listener to DataSource.

⚫ Inside the listener, call setState whenever the data

source changes.

⚫ On unmount, remove the change listener.

You can imagine that in a large app, this same pattern of
subscribing to DataSource and calling setState will occur
over and over again. We want an abstraction that allows us
to define this logic in a single place and share them across
many components. This is where higher-order components
excel. (In inheritance terms, think of them as generic parent
Classes)

In this example the withSubscription is a HOC. Each
component that uses it takes a different data source call.

When components are rendered they will be passed a data
prop (props.data) with the most current data retrieved
from DataSource.

So we create a new wrapped component called
CommentListWithSubscription which wraps the

 });

 }

 render() {

 // ... and renders the wrapped component with the fresh data!

 // Notice that we pass through any additional props

 return <WrappedComponent data={this.state.data} {...this.props} />;

 }

 };}

const CommentListWithSubscription = withSubscription(

 CommentList,

 (DataSource) => DataSource.getComments()

);

const BlogPostWithSubscription = withSubscription(

 BlogPost,

 (DataSource, props) => DataSource.getBlogPost(props.id)

);

CommentList component, and we use that. This way the
CommentListWithSubscription renders the CommentList
component and passes it a props.data (from its wrapper
withSubscription). Of course, it can also have any other
props that we pass when we render it:
<CommentListWithSubscription list-id={list-id}></ >

It will pass the props.data and props.list-id to the
CommentList and will render whatever the CommentList
renders.

Note that a HOC doesn’t modify the input component, nor
does it use inheritance to copy its behavior. Rather, a HOC
composes the original component by wrapping it in a
container component. A HOC is a pure function with zero
side-effects.

The most common signature for HOCs looks like this:
// React Redux's `connect`

const ConnectedComment = connect(commentSelector, commentActions)

(CommentList);

// connect is a function that returns another function

const enhance = connect(commentListSelector, commentListActions);

// The returned function is a HOC, which returns a component that

// is connected to the Redux store

const ConnectedComment = enhance(CommentList);

In other words, connect is a higher-order function that
returns a higher-order component!

// Instead of doing this…

const EnhancedComponent =

 withRouter(connect(commentSelector)(WrappedComponent))

// ... you can use a function composition utility

// compose(f, g, h) is the same as (...args) => f(g(h(...args)))

const enhance = compose(

 // These are both single-argument HOCs

 withRouter,

 connect(commentSelector))

const EnhancedComponent = enhance(WrappedComponent)

This form may seem confusing or unnecessary, but it has a
useful property. Single-argument HOCs like the one
returned by the connect function have the signature
Component => Component. Functions whose output type is
the same as its input type are really easy to compose
together. This is what you do here.

The compose utility function is provided by many third-
party libraries including lodash (as lodash.flowRight),
Redux, and Ramda.

⚫ Don’t Use HOCs Inside the render Method

⚫ Static Methods Must Be Copied Over

⚫ If you add a ref to an element whose component is the result of a HOC, the ref refers to an instance of the outermost

container component, not the wrapped component.

The render props

The term “render prop” refers to a technique for sharing code between React components using a prop whose value is a

function.

https://cdb.reacttraining.com/use-a-render-prop-50de598f11ce

It’s important to remember that just because the pattern is called “render props” you don’t have to use a prop named render to

use this pattern. In fact, any prop that is a function that a component uses to know what to render is technically a “render

prop”. some times it is called “children”.

A component with a render prop takes a function that
returns a React element and calls it instead of
implementing its own render logic.

You follow the approach on the left instead of

While in the left, we don’t have a MouseWithCat but
just a Mouse component that renders whatever
receives in its render props. So we could easily add an
Elephant component and render a mouse with an
elephant picture.

In this example the mouse argument of MouseTracker’s Mouse component is actually the this.state in the handleMouseMove.

Error boundaries
class ErrorBoundary extends React.Component {

 constructor(props) {

 super(props);

 this.state = { hasError: false };

 }

 componentDidCatch(error, info) {

// Display fallback UI

 this.setState({ hasError: true });

 // You can also log the error to an error reporting service

 logErrorToMyService(error, info);

 }

 render() {

Error boundaries (available from v16) are React components that
catch JavaScript errors anywhere in their child component tree, log
those errors, and display a fallback UI instead of the component tree
that crashed. Error boundaries catch errors during rendering, in
lifecycle methods, and in constructors of the whole tree below them.
Note! Error boundaries do not catch errors for:
⚫ Event handlers

⚫ Asynchronous code (e.g. setTimeout or requestAnimationFrame

callbacks)

⚫ Server side rendering

⚫ Errors thrown in the error boundary itself (rather than its

children)

⚫ Only class components can be error boundaries

https://cdb.reacttraining.com/use-a-render-prop-50de598f11ce
https://cdb.reacttraining.com/use-a-render-prop-50de598f11ce

if (this.state.hasError) {

 // You can render any custom fallback UI

 return <h1>Something went wrong.</h1>;

 }

return this.props.children;

 }}

// Then you can use it as a regular component:

<ErrorBoundary><MyWidget /></ErrorBoundary>

Where to put them
The granularity of error boundaries is up to you. You may wrap top-
level route components to display a “Something went wrong” message
to the user, just like server-side frameworks often handle crashes. You
may also wrap individual widgets in an error boundary to protect them
from crashing the rest of the application. In practice, most of the time
you’ll want to declare an error boundary component once and use it
throughout your application.

Note! As of React 16, errors that are not caught by any error boundary will result in unmounting of the whole React component.

tree. They think that it is preferable to show nothing to the user instead of showing wrong info of a broken component.

Its better to use error boundaries than try catch blocks, since the later only works for imperative code. Error boundaries

preserve the declarative nature of React.

Error boundaries do not catch errors inside event handlers. React doesn’t need error boundaries to recover from errors in event

handlers. Unlike the render method and lifecycle hooks, the event handlers don’t happen during rendering. So if they throw,

React still knows what to display on the screen. For example you can define a try/catch block.

Why error boundaries are not HOCs?

Me: HOCs are used to build individual components. If error boundary was a HOC you would have to use it like

MyComponentWithErrorBoundary for each of your components.

Routers
How a router can work:

⚫ It listens to browser navigation events (popstate) in a way that works for all browsers

⚫ When such an event fires, they get the current url and try to match it with the ones (the routes) that you have defined.

⚫ Each route can be an object that has an action attribute which is a function. In case of match, this specific route’s action is

called.

⚫ The action function calls the api, gets the response data, and returns a jsx component with the data as props like

<MyComponent/ {…data}>

⚫ The router renders the given component.

In order to create browser navigation events you use the html5 history api. There are libraries that wrap it and allow you to

easily make the links of your app to push a new browser navigation entry whenever they are clicked. They usually do

this by offering a custom <link> component that you use instead of <a> in your app. (This is one of the reasons the custom link

element was created).

import ReactDOM from 'react-dom';
import history from './history';
import router from './router';
import routes from './routes';
const container = document.getElementById('root');

function renderComponent(component) {
 ReactDOM.render(component, container);
}

I guess that something similar is done by the
react-router package in the background.

function render(location) {
 router.resolve(routes, location) // match the location (the url)
 .then(renderComponent)
 .catch(error => router.resolve(routes, { ...location, error })
 .then(renderComponent));
}

render(history.getCurrentLocation()); // render the current URL
history.listen(render); // listen to navigation events and call the render function
when one happens

React Router
the flow in a nutshell

1. You are on the postlists page.

2. You press the “View Post” link of an individual post

3. The url changes

4. The change triggers the wrapped by the Router main App to rerender

5. The new url is matched by the Route to singlePostPage. The part of the url after the /posts/ is matched and stored as a key

value pair in the match.params object, where the key is named postId.

6. The singlePostPage receives a match object as a prop, from which it extracts the postId. The component is rendered because

its props changes. Since the component is rendered, the useSelector hook runs and collects a new post from the store.

Introduction

this library has three variants:

=> react-router: the core library

=> react-router-dom: a variant of the core library meant to be used for web applications

=> react-router-native: a variant of the core library used with react native in the development of Android and iOS applications.

Both react-router-dom and react-router-native import all the functionality of the core react-router library.

The react-router package includes several routers that we can take advantage of depending on the platform we are targeting.

These include BrowserRouter, HashRouter, and MemoryRouter. The BrowserRouter is used for applications which have a

dynamic server that knows how to handle any type of URL whereas the HashRouter is used for static websites with a server that

only responds to requests for files that it knows about.

Each Router provider creates a history object that it uses to keep track of the current location and re-renders the wrapped

components (the wrapped main App component) whenever this location changes. The history object contains the location

object. The location object within the history object is shaped like so { pathname, search, hash, state }. The location object

properties are derived from the application URL.

https://github.com/ReactTraining/history

The Router low level object

I saw that these two are identical. But material UI uses the second approach with react router version 6. Why? The difference is

the use of a custom history object. Why we need a custom one?

(I saw by someone to mention that he needed the custom history object to be able to programmatically navigate your users. But

I don’t think this is necessary since you can access the history object from the useHistory hook).

According to the official documentation The most common use-case for using the low-level <Router> is to synchronize a custom

history with a state management lib like Redux or Mobx. Note that this is not required to use state management libs alongside

React Router, it’s only for deep integration.

With Router and custom history object you can do things like listening to location changes - history.listen((location, action) =>

{}); probably you can get the history object from the useHistory hook.

The Route component

The <Route/> component of the react-router library is one of the most important building blocks in the React Router package.

It renders the appropriate user interface when the current location matches the route’s path. When a path is matched, a React

component should be rendered so that there’s a change in the UI.

<Route path=”/items”/>

<Route exact path=”/items” component={Items} />

<Route exact path=”/items”

render={() => (<div>List of Items</div>)} />

const cat = {category: “food”}

<Route exact path=”/items”

render={props => <Items {…props} data={cat}/>} />

<Route children={props => <Items {…props}/>}/>

It is also worth noting that the Path-to-RegExp package is used by the
react-router package to turn a path string into a regular expression and
matched against the current location.

In the first render example, when the current location matches
the path exactly, a React element is created and the string List of
Items is rendered in the browser.
In the second example, data represents the extra props that are passed
to the Items component. Here, cat is passed in as the extra prop.

The <Route/> component provides three props that can be used to determine which component to render:

⚫ component

The component prop defines the React element that will be returned by the Route when the path is matched. This React element

is created from the provided component using React.createElement.

⚫ Render

The render prop provides the ability for inline rendering and passing extra props to the element.

⚫ Children

The children prop is similar to the render prop since it always expects a function that returns a React element. The major

difference is that the element defined by the child prop is returned for all paths irrespective of whether the current location

matches the path or not.

Notice: if more than one route components are matched, they will all be rendered. This is by design, allowing us to

compose <Route>s into our apps in many ways, like sidebars and breadcrumbs, bootstrap tabs, etc.

https://reacttraining.com/react-router/web/api/Router

The Switch component

The react-router library also contains a <Switch/> component that is used to wrap multiple <Route/> components. Renders the

first child <Route> or <Redirect> that matches the location.

How is this different than just using a bunch of <Route>s?
<Switch> is unique in that it renders a route exclusively. In contrast, every <Route> that matches
the location renders inclusively.
If the URL is /about, then <About>, <User>, and <NoMatch> will all render because they all match
the path. This is by design, allowing us to compose <Route>s into our apps in many ways, like
sidebars and breadcrumbs, bootstrap tabs, etc.
Occasionally, however, we want to pick only one <Route> to render. If we’re at /about we don’t
want to also match /:user (or show our “404” page).

The Link component

The react-router package also contains a <Link/> component that is used to navigate the different parts of an application by way

of hyperlinks. It is similar to HTML’s anchor element but the main difference is that using the Link component does not reload

the page but rather, changes the UI and updates the url.

The <Link/> component uses ”to” as a prop to define the location to navigate
to. The to prop can either be a string or a location object. If it is a string, it is
converted to a location object. Note that the pathname must be absolute.

Nested routing

When a location and a router’s path are successfully matched, a match object is created. This object contains information about

the URL and the path. This information can be accessed as properties on the match object. Let’s take a closer look at the

properties:

=> url : A string that returns the matched part of the URL

=> path : A string that returns the route’s path

=> isExact : A boolean that returns true if the match was exact

=> params : An object containing key-value pairs that were matched by the Path-To-RegExp package.

The following example contains four components (not shown here) one of which is the Category component which demonstrates

nested and dynamic routing. Initially we are in the home page url and we press the category link.

https://reactrouter.com/Route.md
https://reactrouter.com/Redirect.md

When the Category link is clicked, a route path is matched and
a match object is created and sent as a prop to
the Category component. Within the Category component,
the match object is destructured in the argument list and links
to the three categories are created using match.url. Template
literals are used to construct the value of the prop on
the Link component to the
different /shoes, /food and /dresses URLs.

We also have a Route component so that when the location
changes (after we press a specific category) the new location
will be matched by the Route element and it will be rendered.

:categoryName is the path parameter within the URL and it
catches everything that comes after /category. Passing the
value to the path prop in this way saves us from having to
hardcode all the different category routes. Also, notice the use
of template literals to construct the right path.

A pathname like category/shoes creates a param object {categoryName: “shoes”}

We'll use React Router to show this component when the page URL looks
like /posts/123, where the 123 part should be the ID of the post we want
to show.
React Router will pass in a match object as a prop that contains the URL
information we're looking for. When we set up the route to render this
component, we're going to tell it to parse the second part of the URL as a
variable named postId, and we can read that value from match.params.

And in the postlist

So the flow is like this:

1. You are on the postlists page.

2. You press the “View Post” link of an individual post

3. The url changes

4. The change triggers the wrapped by the Router components to rerender

5. The new url is matched by the Route to singlePostPage. The part of the url after the /posts/ is matched and stored as a key

value pair in the match.params object, where the key is named postId.

6. The singlePostPage receives a match object as a prop, from which it extracts the postId. The component is rendered since

its props changes. Since the component is rendered, the useSelector hook runs and collects a new post from the store.

Have in mind

Nested routing: Prior to v4 you had to use Route inside Route. In v5 you could avoid it with the use of the match object. In v6 it

is recommended to use Route within the new Routes component.

In v4 and back

In v6
https://codesandbox.io/s/react-router-test-jhiol
export default function App() {

return (

<BrowserRouter>

<nav>

<NavLink to="/">Home</NavLink>

<NavLink to="Topics">Topics</NavLink>

</nav>

<Routes>

<Route path="/" element={<HomePage />} />

<Route path="Topics" element={<Topics/>}>

<Route path="/" element={<TopicsList />} />

<Route path=":id" element={<Topic/>} />

</Route>

</Routes>

</BrowserRouter>

);

}

function Topics() {

return (

<div>

Layout

<Outlet />

</div>

);

}

function TopicsList() {

return (

<div>

<nav><Link to="2">Topic 2</Link></nav>

<nav><Link to="3">Topic 3</Link></nav>

</div>

);

}

function Topic() {

const { id } = useParams();

return <div>id: {id}</div>;

}

In v5

Version 6

Routes Component

https://codesandbox.io/s/react-router-test-jhiol

The Routes component essentially replaces the Switch component.

New features including relative routing and linking, automatic route ranking, and nested routes and layouts.

You can either split routes in different places

⚫ Unlike the <Switch> API in v5, all <Route

path> and <Link to> values under

v6's <Routes> element are automatically relative to the

parent route that rendered them. (this way you avoid

having to manually

interpolate match.path and match.url anymore)

⚫ all <Route> paths match exactly by default

⚫ If you want to match more of the URL because you have

child routes (see the <Routes> defined in

the Users component above), use a trailing * as

in <Route path="users/*">.

Or gather them all together

Either Using JSX Routes component Or Using object based routes (useRoutes hook)

In the gather all with JSX case you don’t need * in users path.
We used an <Outlet> element as a placeholder.
An <Outlet> in this case is how the Users component
renders its child routes (the three Routes “/”, “me” and
“:id”). So the <Outlet> will render either a <UsersIndex>, a
<UserProfile> or <OwnUserProfile> element respectively
depending on the current location.
In React Router v5, nested routes have to be defined explicitly.

The useRoutes hook accepts a (possibly nested) array of
JavaScript objects that represent the available routes in your
app. Each route has a path, element, and
(optionally) children, which is just another array of routes.
The object-based route configuration may look familiar if
you were using the react-router-config package in v5.

Notice that the Users component here acts like a layout for
its children components since they are rendered inside it (in
their Outlet element).

The useParams hook can then be used to retrieve a
parameter value from the path

Splitting routes vs having them in one place

In a large app it's nice to be able to spread out your route definitions across multiple <Routes> elements so you can do code

splitting more easily. But in a smaller app, or with nested components that are closely related, you may want to just see all of

your routes in one place. This can help a lot with code readability.

navigate imperatively

Version 6 is a great chance for us to get the router all ready for the future of React: suspense. Instead of giving you access to

the history instance directly (usage of which would introduce subtle bugs in a suspense-enabled app), v6 gives you

a useNavigate hook. This is useful any time you need to navigate imperatively, e.g. after the user submits a form or clicks on a

button.

useNavigate hook
If you need to do a replace instead of a push, use navigate('success', {
replace: true }). If you need state, use navigate('success', { state }).

useNavigate is used instead of the useHistory hook and its
useHistory.push() method.

Queryset parameters

let [searchParams, setSearchParams] = useSearchParams();

Use the useSearchParams to get and set queryset parameters

Lazy loading of component in routes

Login example

The Redirect component and Protected routes

The rationale of having a protected route is that when a user tries to access part of the application without logging in, they are

redirected to the login page to sign into the application.

For this redirect to work as intended, the react-router package
provides a <Redirect/> component to serve this purpose. This
component has a to prop which is passed to it in form of an object
containing the pathname and state as shown below.

Here, the Redirect component replaces the current location in the stack with the pathname provided in the object (here /login)

and then stores the location that the user was attempting to visit, in the state property.

Important

The value in state can be accessed from within the Login component using this.props.location.state since the location object is {

pathname, search, hash, state }. This means that you can access the state of a component’s location, from its location object.

Custom routes

We create a custom route called PrivateRoute
and use it in our Switch.

We destructure the props within the
argument list and
rename component to Component. We use
the Route component by passing it
the ...rest and render props. Within
the render prop, we write logic that
determines whether to render a component
and which one to render if the user is signed
in. Otherwise, the user is redirected to the
login page.

The login component (with a fake authentication function).

Have in mind that with this.props.location.state it gets the
state from the Redirect component.

When user logins we set the isAuthenticated property of the
fakeAuth object to true. The fakeAuth object is exported so
it can be accessed by other modules which by checking its
isAuthenticated property detect if the user is logged in or
not.

The redirectToReferrer state property is set to true when
the user is signed in. This triggers a redirect to the route they
had intended to visit, or to the ‘/’ path in case they navigated
directly to the login route.

Are the location and match objects added as props by default?

this.props.location

this.props.match

Misc

No match component

Always have a no match route

Context
Context provides a way to pass data through the component tree without having to pass props down manually at every level.

Whenever the value of the context changes, the subscribed components are rendered. Context is designed to share data that can

be considered “global” for a tree of React components, such as the current authenticated user, theme, or preferred language.

Note: Context is primarily used when some data needs to be accessible by many components at different nesting levels. Apply it

sparingly because it makes component reuse more difficult. If you only want to avoid passing some props through many

levels, component composition is often a simpler solution than context.

Instead of passing down props

You can use Context

Providers

Every Context object (like the ThemeContext in the example above) comes with a Provider React component that allows

consuming components (the descendants of this Provider) to subscribe to context changes. Accepts a value prop to be passed to

consuming components that are descendants of this Provider. One Provider can be connected to many consumers. Providers

can be nested to override values deeper within the tree. All consumers that are descendants of a Provider will re-render

whenever the Provider’s value prop changes.

useContext hook

Accepts a context object (the value returned from React.createContext) and returns the current context value for that context.

The current context value is determined by the value prop of the nearest <MyContext.Provider> above the calling component in

the tree.

When the nearest <MyContext.Provider> above the component updates, this Hook will trigger a rerender with the latest

context value passed to that MyContext provider

https://reactjs.org/docs/composition-vs-inheritance.html

The context value is passed to the children components so why you need this hook? The hook is useful if you want to get the

value of the context provider and use it in javascript for any reason, for a function that the child component uses for example.

You can build your own Providers, see Devias kit pro, contexts/SettingsContext. See also the use of the useContext hook.

Hooks
Hooks are a new addition in React 16.8. They let you use state and other React features without writing a class. Hooks are

functions that let you “hook into” React state and lifecycle features from function components. Hooks don’t work inside classes

— they let you use React without classes. React provides a few built-in Hooks like useState. You can also create your own Hooks

to reuse stateful behavior between different components. Custom hooks are to replace the need to use Higher order components

to share logic between components.

It takes a bit of a mindshift to start “thinking in Hooks”. We intend for Hooks to cover all existing use cases for classes, but we

will keep supporting class components for the foreseeable future. You don’t have to rewrite your whole app using hooks. You

can just start using them for your new components.

Hook rules

⚫ Only call Hooks at the top level. Don’t call Hooks inside loops, conditions, or nested functions.

⚫ Hooks are only called from React function components (or custom Hooks — which are also only called from React

components). Don’t call Hooks from regular JavaScript functions.

Hooks “hook” into react lifecycle features

Whenever you want to use withRepos like functionality (HOC) where the wrapped components need to have access to the most

recent data from the server (here the repos) use a custom hook instead of the with Repos component that receives the new

repos. See custom hooks later.

Collection of React Hooks

There is a collection of community created custom hooks that you can use in your applications https://react-hooks.org/

https://react-hooks.org/

Some of the reasons they implemented hooks

https://www.youtube.com/watch?v=eX_L39UvZes

The reasons in a nutshell.
⚫ To avoid classes we have to find a way to use local state in our components.

(using the useState hook)

⚫ We need to find a way to replace lifecycle methods (using the useEffect

hook)

⚫ We need to find a way to share non visual (stateful) logic between

components without using High order components (using custom hooks).

It’s hard to reuse stateful logic between components

Prior to hooks you had to use patterns like higher order components
or render props to do this. This could lead to a wrapper hell. With
Hooks, you can extract stateful logic from a component so it can be
tested independently and reused. Hooks allow you to reuse stateful
logic without changing your component hierarchy. This makes it easy
to share Hooks among many components or with the community

Complex components become hard to understand

For example, components might perform some data fetching in componentDidMount and componentDidUpdate. However, the

same componentDidMount method might also contain some unrelated logic that sets up event listeners, with cleanup performed

in componentWillUnmount. Mutually related code that changes together gets split apart, but completely unrelated code ends up

combined in a single method. This makes it too easy to introduce bugs and inconsistencies. In many cases it’s not possible to

break these components into smaller ones because the stateful logic is all over the place. It’s also difficult to test them. This is

one of the reasons many people prefer to combine React with a separate state management library. However, that often

introduces too much abstraction, requires you to jump between different files, and makes reusing components more difficult.

To solve this, Hooks let you split one component into smaller functions based on what pieces are related (such as setting up a

subscription or fetching data), rather than forcing a split based on lifecycle methods.

Classes confuse both people and machines

Some of the problems: understand how this works in javascript. When to use function and when class based components. Ahead

of time compilation of components is more difficult with classes? More difficult to minimize. More difficult to stay in the

optimized way.

Hooks let you use more of React’s features without classes.

Hooks

useState

https://www.youtube.com/watch?v=eX_L39UvZes

It gets a single argument which is the initial state value. It outputs an array of two values, the first one is the state value and the

second one a function used to modify the state.

React intentionally “waits” until all components call setState() in their event handlers before starting to re-render

Calls to setState are asynchronous (when is called inside event handlers - functions called on browser events for example onClick

functions) - don’t rely on this.state to reflect the new value immediately after calling setState. React “flushes” the state updates

at the end of the browser event. This ensures, for example, that if both Parent and Child call setState during a click

event, Child isn’t re-rendered twice. So, React intentionally “waits” until all components call setState() in their event handlers

before starting to re-render.

useEffect

The problem with the lifecycle way of thinking is that it forces us to sprinkle related code into different places (into different

lifecycle methods). instead of lifecycle methods, we now have to think in terms of synchronization, which is actually what we

were trying to achieve using the lifecycle methods. Synchronization between things that lie outside of react, for example fetch

Api calls, with react things like state of components and UI.

useEffect let you use do this. It let’s you use side effects in function react
components. It takes two arguments. The first is the function to call
actually what side effect to call, and the second one is an array (called
dependencies) defining when to run this function. After a rerender of the
component, the effect will run only if a dependency has changed. Notice
that the effect will not run if a dependency change. It only runs after a
rerender. You are just telling React to skip applying an effect if certain
values haven’t changed between re-renders.

By default (without second argument), React runs the effects after every
render — including the first render so its similar to DidMount and
DidUpdate. With values as second argument, the effect doesn’t run on
every render, but only when these values change.
You can also write clean up code for an effect function. The cleanup code
is the code that is returned from the effect function. This function will be
executed when the component unmounts and before re-running the
effect.

When you call useEffect, you’re telling React to run your “effect” function
after flushing changes to the DOM.

So in total, useEffect serves the same purpose
as componentDidMount, componentDidUpdate,
componentWillUnmout in React classes, but unified into a single API.

So we actually say, whenever the id changes make a fetch call to get the repos. Using lifecycle methods we had to fetch repos in

didMount and didUpdate.

The array argument is used to avoid rerunning the effect on every re-render. It will only run if the re-render is done with values

(defined in the array) different from the previous values.

Note: If you want to run an effect and clean it up only once (on mount and unmount), you can pass an empty array ([]) as a

second argument. This tells React that your effect doesn’t depend on any values from props or state, so it never needs to re-run.

It will only run on mount and the clean up function on the unmount. This isn’t handled as a special case — it follows directly

from how the dependencies array always works.

Use effect Tips

Runs only after the component has been mounted (initial render). It is the equivalent of
componentDidMount

Runs after every render.

Be careful with your dependencies array. If you use the dependencies array, make sure it includes all
values from the component scope (such as props and state) that change over time and that are used by
the effect. (this is important. The dependencies must be variables that are used by the useEffect
function). It’s very common to forget a value or to think that you don’t need it in the array. If you do that,
you will produce bugs, because your code will reference stale values from previous renders.

NOTICE
An effect with dependencies will be executed too, after the component is mounted (since the previously
stored values for the dependencies are undefined or something like that)

Equivalents

Run something before render

This works because useMemo doesn’t require to return a value and you
don’t have to actually use it as anything, but since it memorizes a value
based on dependencies which will only run once ("[]") and its on top of our
component it runs once when the component mounts before anything else.

Notice

No, that won't work. Effect could only be triggered when component is rerendered and dependencies change
(dependencies are variables that the useEffect function uses). Changing global variables won't cause a
rerender, so the effect won't run.

More than one side effects

If you use more than one side effects (many useEffect calls) React will apply every effect used by the component, in the order

they were specified

Custom hooks

Custom hooks are like components, but not tied to the UI. Like components, they have state and can respond to react lifecycle

methods, but they don’t render anything. They just return a value that can be used in other parts of the code (in other hooks or

components). The returned value is updated whenever the custom hook is updated (it’s state changes).

A custom hook can be thought of as a function which is executed from within the functional component and effectively the hooks

that are present in the custom hook are transferred on to the component. So any change that would normally cause the

component to re-render if the code within the custom hook was directly written within functional component will cause a re-

render. So if the state of a custom hook changes, the host component will be re-rendered.

it doesn’t really matter, whether the state change in hooks is “internal” or not. Every state change in a hook, whether it affects

its return value or not, will cause the “host” component to re-render. And of course exactly the same story with chaining hooks:

if a hook’s state changes, it will cause its “host” hook change as well, which will propagate up through the whole chain of hooks

until it reaches the “host” component and re-renders it. This might have a performance hit on your app.

Sharing stateful non visual logic. In react is kind of difficult to share stateful non visual logic (you need higher order components

or render props) because react by design, ties its components to visual logic ie to UI.

Custom Hooks are more of a convention than a feature. If a function’s name starts with ”use” and it calls other Hooks, we say it

is a custom Hook. The useSomething naming convention is how our linter plugin is able to find bugs in the code using Hooks.

Just like in a component, make sure to only call other Hooks unconditionally at the top level of your custom Hook.

Custom Hooks offer the flexibility of sharing logic that wasn’t possible in React components before. You can write custom Hooks

that cover a wide range of use cases like form handling, animation, declarative subscriptions, timers, and probably many more

we haven’t considered.

This is the legacy way of sharing non visual logic,
using higher order components.

Then:

There is no special hook for that. Instead you can create your own hook
that is decoupled from any UI.

Then:

Any logic that is related to fetching repos is isolated inside this custom
hook. So whenever we need repos inside any component we can consume
our custom useRepos hook.

So why not just use a regular function that fetches the repos, import it in your react components and use it even in the class

based components and avoid using HOCs? What makes the custom hook different? The difference is the fact that the custom

hook is a react thing, it hooks into react lifecycle features (For example it is automatically updated when the id changes in

this example). It has a state, it uses other hooks which make the custom hook to be automatically updated whenever the id

changes. The modifications are then rippled to the components that consume the data output from the custom hook. It is like a

component but not tied with UI. It doesn’t render anything. It just holds non-UI stateful logic that needs to be shared with

many components.

useSelector hook

Can use it to manage local state in a redux like way (with actions and reducers). instead of changing the local state with the

setState you change it by dispatching actions.

Other useful hooks

useInterval

Suspense
Suspense lets your components “wait” for something before they can render. It’s a mechanism for data fetching libraries to

communicate to React that the data a component is reading is not ready yet. So until the data is fetched you can show something

else.

It is also good to note that Suspense is not a data fetching mechanism but rather a way to delay the rendering of components

while you wait for unavailable data. Dan Abramov gave a great demo on how Suspense works check it

out https://codesandbox.io/s/frosty-hermann-bztrp?file=/src/index.js .

Notice: Suspense is an experimental feature as of late 2020

A data fetching library (like axios) must support Suspense. (probably suspense needs some specific values returned when you

make a call for data and the data isn’t available yet)

Version 18 notes

In React 18, you can start using Suspense for data fetching in opinionated frameworks like Relay, Next.js, Hydrogen, or Remix.

Ad hoc data fetching with Suspense is technically possible, but still not recommended as a general strategy.

In the future, we may expose additional primitives that could make it easier to access your data with Suspense, perhaps without

the use of an opinionated framework. However, Suspense works best when it’s deeply integrated into your application’s

architecture: your router, your data layer, and your server rendering environment. So even long term, we expect that libraries

and frameworks will play a crucial role in the React ecosystem.

As in previous versions of React, you can also use Suspense for code splitting on the client with React.lazy. But our vision for

Suspense has always been about much more than loading code — the goal is to extend support for Suspense so that eventually,

the same declarative Suspense fallback can handle any asynchronous operation (loading code, data, images, etc).

Currently the only built-in use of Suspense is to lazy load components (code splitting)

React 16.6 added a <Suspense> component
that lets you “wait” for some code to load (here
lazy loading a component) and declaratively
specify a loading state (like a spinner) while
we’re waiting.

https://twitter.com/dan_abramov?ref_src=twsrc%5egoogle|twcamp%5eserp|twgr%5eauthor
https://codesandbox.io/s/frosty-hermann-bztrp?file=/src/index.js

Suspense for Data Fetching is a new feature that lets you
also use <Suspense> to declaratively “wait” for anything
else, including data. Suspense lets your components “wait”
for something before they can render. In this example, two
components wait for an asynchronous API call to fetch
some data

Suspense is not a data fetching library. It’s a mechanism
for data fetching libraries to communicate to React
that the data a component is reading is not ready yet. React
can then wait for it to be ready and update the UI.
(At Facebook, we use Relay and its new Suspense
integration. We expect that other libraries like Apollo can
provide similar integrations.)

In the long term, we intend Suspense to become the
primary way to read asynchronous data from components
— no matter where that data is coming from.

Code splitting
The best way to introduce code-splitting into your app is through the dynamic import() syntax.

When Webpack comes across this syntax, it automatically starts code-splitting
your app. If you’re using Create React App, this is already configured for you and
you can start using it immediately. It’s also supported out of the box in Next.js.
otherwise you have to properly configure webpack.

react.lazy()

The React.lazy function lets you render a dynamic import as a regular component. Does this mean that there will be a distinct

chunk for each lazy loaded component?

This will automatically load the bundle containing
the OtherComponent when this component (the one that contains
this code) is first rendered.

https://codesandbox.io/s/frosty-hermann-bztrp
https://relay.dev/docs/en/experimental/step-by-step
https://relay.dev/docs/en/experimental/step-by-step
https://facebook.github.io/create-react-app/docs/code-splitting
https://nextjs.org/docs/advanced-features/dynamic-import

React lazy works for specific cases:
React.lazy takes a function that must call a dynamic import(). This
import must return a Promise which resolves to a module with
a default export containing a React component. The lazy
component should then be rendered inside
a Suspense component, which allows us to show some fallback
content (such as a loading indicator) while we’re waiting for the
lazy component to load.

Error boundaries around suspense

If the other module fails to load (for example, due to network failure), it will trigger an error. You can handle these errors to

show a nice user experience and manage recovery with Error Boundaries. Once you’ve created your Error Boundary, you can

use it anywhere above your lazy components to display an error state when there’s a network error.

Named exports

React.lazy currently only supports default exports. If the
module you want to import uses named exports, you can
create an intermediate module that reexports it as the
default. This ensures that tree shaking keeps working and
that you don’t pull in unused components.

Route based code splitting

Deciding where in your app to introduce code
splitting can be a bit tricky. You want to make sure
you choose places that will split bundles evenly, but
won’t disrupt the user experience. A good place to
start is with routes.

Here’s an example of how to setup route-based code
splitting into your app using libraries like React
Router with React.lazy.

Caching in react

Misc

https://reactjs.org/docs/error-boundaries.html
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

Store and retrieve from local storage

A typical process

Store and retrieve from a cookie

Using the js-cookie library

Cookies.get

Styling components
CSS in JS

“CSS-in-JS” refers to a pattern where CSS is composed using JavaScript instead of defined in external files. Note that this

functionality is not a part of React, but provided by third-party libraries.

CSS uses a global namespace for CSS Selectors that can easily result in style conflicts throughout your application when building

an application using modern web components. You can avoid this problem by nesting CSS selectors or use a styling convention

like BEM but this becomes complicated quickly and won’t scale. CSS-in-JS avoids these problems entirely by generating

unique class names when styles are converted to CSS. This allows you to think about styles on a component level without

worrying about styles defined elsewhere. (A typical example of an automatically created class name is “makestyles-root-13”)

➢ JSS

JSS is a set of libraries for writing CSS in JavaScript. (JSS is one CSS in JS solution). They address a wide spectrum of issues. The

most significant features are class names scoping, critical CSS extraction, significantly improved maintenance, code reuse and

sharing, theming, co-location and state-driven styles.

The general process goes like this:

1. Declaration: Styles are described by the user in JavaScript. By default we use JSON Syntax.

2. Processing: Styles are processed by JSS plugins. Plugins do vendor prefixing, implement syntactic sugar for user styles and

can be made to do any other transformations, similar to PostCSS.

3. Injection: Once you call the .attach method, styles are compiled to a CSS string and injected into the DOM using

a style element (this step is done by the core jss library)

The essential libraries in JSS are core, React-JSS, and Styled-JSS. Low
level and library-agnostic, the core is responsible for compilation and
rendering (injection) of a stylesheet.

Jss library
Generates the CSS in runtime, but you can generate it in the server if
you want (server side rendering). notice that in the server side
rendering case, only the styles used by the current page are generated
and send
The inputs are objects (or simple template strings) with keys as the
class names and the outputs are the generated CSS and objects defining
the generated scoped class names.

React-jss library
React-jss library injects the component styles in the DOM once the
component is mounted and removes the injected styles once the
component is unmounted.

➢ Styled components

Another CSS in JS solution.

Styled primitive or styled component is a component which has initial styles applied when created. There is no need to provide

class names when you use it. It has been very actively promoted by the Styled Components library and is worth looking into as

an alternative to other interfaces.

Styled components is a library that enables the CSS in JS concept. There are alternative libraries for achieving the same things.

styled-components utilizes tagged template literals to style your components. You don’t have to write css in separate .css files.

You write css directly inside the components code.

http://cssinjs.org/json-api
https://www.styled-components.com/

Misc

classnames

render() {
 let className = 'menu';
 if (this.props.isActive) {
 className += ' menu-active';
 }
 return Menu
}

If you often find yourself writing code like this, classnames package can simplify
it.

You can use Material-UI's styling solution in your app, whether or not you are using Material-UI components. It is a CSS in JS

solution. It uses JSS at its core.

Can I use inline styles? Yes, see the docs on styling here.

Are inline styles bad? CSS classes are generally better for performance than inline styles.

React does not have an opinion about how styles are defined; if in doubt, a good starting point is to define your styles in a

separate *.css file as usual and refer to them using className.

Inline styling: style attribute is most often used in React applications to add dynamically-computed styles at render time. In

most cases, className should be used to reference classes defined in an external CSS stylesheet.

Change css properties based on screen size

https://github.com/cssinjs/jss

You can change the css
properties assigned to a
selection either using the build
in material’s UI breakpoints (xs,
sm, md, lg) or by using custom
media queries if you want to use
specific screen sizes.

Notice also how you select
children of a specific class. Using
the
“& selector”: {

}

& + & is not CSS but some file
meant to be compiled to CSS.
In SCSS and Less, the & is just a
repetition of the enclosing
selector. So here it means action
+ action (the first action element
placed immediately after an
action element)

Responsivefontsizes utility

It automatically creates responsive font sizes for the various
typography variants (h1 to h6, subtitle1) so that you don’t have
to manually write something like this for every variant.

You just use the h1 for example, and this h1 will be responsive.

https://sass-lang.com/
http://lesscss.org/

Define a custom typography object to use in theme creation

Notice that if you have modified the default typography and used this in the
createMuiTheme function to create your custom theme then you have to
define media queries (or use the built in breakpoints)

Using css

Tips

From create-react-app docs: Generally, we recommend that you don’t reuse the same CSS classes across different components.

For example, instead of using a .Button CSS class in <AcceptButton> and <RejectButton> components, we recommend creating

a <Button> component with its own .Button styles, that both <AcceptButton> and <RejectButton> can render (but not inherit).

Following this rule often makes CSS preprocessors less useful, as features like mixins and nesting are replaced by component

composition. You can, however, integrate a CSS preprocessor if you find it valuable.

Notice:

Create-React-app documentation mentions that they normally recommend importing stylesheets, images, and fonts from

JavaScript. Not just using a reference to an image in the public folder, but importing the image in javascript and using it. This

image doesn’t need to be in the public folder.

Adding images fonts and files

This is the recommended approach to load images and assets in general. Using javascript imports.

https://facebook.github.io/react/docs/composition-vs-inheritance.html
https://create-react-app.dev/docs/adding-a-stylesheet
https://create-react-app.dev/docs/adding-images-fonts-and-files

This ensures that when the project is built, webpack
will correctly move the images into the build folder, and
provide the correct paths (the value returned for an
image is the path to the image)

The advantages of importing assets in javascript with webpack are:

1. Scripts and stylesheets get minified and bundled together to avoid extra network requests.

2. Missing files cause compilation errors instead of 404 errors for your users.

3. Result filenames include content hashes so you don’t need to worry about browsers caching their old versions.

The alternative is to manually add them to the build using the public folder (and referencing them in javascript with the env

variable PUBLIC_URL (or directly as I saw).

Testing
There are a few ways to test React components. Broadly, they divide into two categories:

1. Rendering component trees in a simplified test environment and asserting on their output.

2. Running a complete app in a realistic browser environment also known as “end-to-end” tests. These systems automate

browser actions. (Cypress, pupeteer, selenium)

Testing in Test environments

The second category isn’t specific to react, so for testing react components you fall into the first category. Some tools to use for

such kind of testing is

⚫ Jest

If you use Create React App, Jest is already included out of the box with useful defaults. Jest is widely compatible with React

projects, supporting features like mocked modules and timers, and jsdom support (a lightweight browser implementation that

runs inside Node.js).

⚫ React Testing Library

⚫ Mocha

If you’re writing a library that tests mostly browser-specific behavior, and requires native browser behavior like layout or real

inputs (instead of the simulated browser environment offered by jsdom node package used by Jest), you could use a framework

like mocha.

React component test frameworks often offer you the possibility to

⚫ Mock a rendering surface: Tests often run in an environment without access to a real rendering surface like a browser.

For these environments, we recommend simulating a browser with jsdom, a lightweight browser implementation that runs

inside Node.js.

⚫ Mock functions: This is especially useful for data fetching. It is usually preferable to use “fake” data for tests to avoid the

slowness and flakiness due to fetching from real API endpoints

⚫ Mock modules: Some components have dependencies for modules that may not work well in test environments, or aren’t

essential to our tests. It can be useful to selectively mock these modules out with suitable replacements

⚫ Mock timers: In testing environments, it can be helpful to mock these functions out with replacements that let you

manually “advance” time. This is great for making sure your tests run fast!

https://facebook.github.io/create-react-app/docs/running-tests
https://reactjs.org/docs/testing-environments.html#mocking-modules
https://reactjs.org/docs/testing-environments.html#mocking-timers
https://reactjs.org/docs/testing-environments.html#mocking-a-rendering-surface
https://mochajs.org/
https://github.com/jsdom/jsdom

End to end tests

End-to-end tests are useful for testing longer workflows, especially when they’re critical to your business (such as payments

or signups)

Misc

Fetching data

Suspense will be the proper solution for this, but is not yet ready and not yet implemented by most data fetching libraries (late

2020). In general there are three basic approaches for fetching data:

➢ Fetch-on-render (for example, fetch in useEffect): Start rendering components. Each of these components may trigger

data fetching in their effects and lifecycle methods. This approach often leads to “waterfalls”.

➢ Fetch-then-render (for example, Relay without Suspense): Start fetching all the data for the next screen as early as

possible. When the data is ready, render the new screen. We can’t do anything until the data arrives.

➢ Render-as-you-fetch (for example, Relay with Suspense): Start fetching all the required data for the next screen as early

as possible, and start rendering the new screen immediately — before we get a network response. As data streams in, React

retries rendering components that still need data until they’re all ready.

Fetch on render

A common way to fetch data in React apps today is to use an effect. This means that you have to make the component capable of

rendering something when the data has not been fetched yet. Usually you do this by rendering loading indicators. Notice that

you can use individual loading indicators for each component that waits for its data or one loading screen for the whole page

that might contain more than one components that wait for data.

Waterfall

This approach leads to the problem of waterfall. If you have one component that renders another one where both the parent

and the child fetch data as a side effect after they are rendered, then the child has to wait for the parent to fetch the data in order

to start fetching data itself.

Notice that these workflows can be simplified with the use
of Suspense, essentially by not having to write the
“loading…” logic.

The same example using Suspense.

Misc

Env vars

For reading env vars from files react uses the dotenv package.

Note: (in the .env file) You must create custom environment variables beginning with REACT_APP_. Any other variables except

NODE_ENV will be ignored to avoid accidentally exposing a private key on the machine that could have the same name. Changing

any environment variables will require you to restart the development server if it is running.

Files on the left have more priority than files on the right:

• npm start: .env.development.local, .env.local, .env.development, .env

• npm run build: .env.production.local, .env.local, .env.production, .env

• npm test: .env.test.local, .env.test, .env (note .env.local is missing)

Mount, Unmount and Render

Have in mind that a component will be unmounted if you change a route that doesn’t render this component, so the next time

you will visit the route that does use it it will be mounted again. Have also in mind that while the component is mounted it can

be re-rendered (if its props or state change).

React only renders primitive data types

You can’t do
{algorithms_list}

A React child should be either a JSX tag, or of primitive data
type (not an object).

https://developer.mozilla.org/en-US/docs/Glossary/Primitive

If algorithms_list is an object. You either have to convert it to
string or use one of its properties if it is of primitive data type.

In JavaScript, a primitive (primitive value, primitive data type) is data that is not an object and has no methods. There are 7

primitive data types: string, number, bigint, boolean, undefined, symbol, and null.

Update object in state

Values is an object like {‘a’:1, ‘b’:2, ‘c’:3}
The purpose of the function is to update this object.
You give it a key value pair like handleChange(‘b’, 20)
So it updatest he values object. first it spreads the values members and then it
overrides one member with the given arguments.

FIRST

As Addy Osmani would say, good software components should be focused, independent, reusable, small and testable (FIRST)

Environment variables

WARNING: Do not store any secrets (such as private API keys) in your React app! Environment variables are embedded into the

build, meaning anyone can view them by inspecting your app’s files.

Return null

To not render anything, just return null from the component

Curly braces

var css = { color: red }
<h1 style={css}>Hello
world</h1>

Curly braces in JSX: The curly braces are a special syntax to let the JSX parser know that
it needs to interpret the contents in between them as JavaScript instead of a string. You
need them when you want to use a JavaScript expression like a variable or a reference
inside JSX. This process is generally referred to as "interpolation".

npx vs npm for avoiding global installations

Vue
⚫ Css inside the component file

⚫ State is kept in a data object which you can freely update

whenever you want.

⚫ Two way binding (an input field updates the data object

(state) and the data object updates the input)

React
⚫ Separate css file for each component

⚫ State should be changed with setState so that various

hooks can be triggered by it

(componentWillReceiveProps,

shouldComponentUpdate, componentWillUpdate,

render, componentDidUpdate)

⚫ One way biding (the state updates the input field)

https://addyosmani.com/
https://addyosmani.com/first/

create-react-app
npx create-react-app my-app --template [template-name]

You can use a template other than the default one.

npx create-react-app my-app --template redux

We recommend using the Redux templates for Create-React-App as the fastest way to create a new Redux + React project. It

comes with Redux Toolkit and React-Redux already configured, using the same "counter" app example you saw in Part 1. This

lets you jump right into writing your actual application code without having to add the Redux packages and set up the store.

- You can also install redux toolkit in an existing app with npm install @reduxjs/toolkit

npx create-react-app my-app --use-npm

When you create a new app, the CLI will use Yarn to install dependencies (when available). If you have Yarn installed, but would

prefer to use npm, you can append --use-npm to the creation command.

Running the create-react-app my-app will create the following structure.

Inside the newly created project, you can run some built-in commands
cd my-app
npm start
npm test

Npm run build
Builds the app for production to the build folder. It correctly bundles React in production mode
and optimizes the build for the best performance. The build is minified and the filenames include
the hashes. Your app is ready to be deployed.

Public folder in create-react-app

In general the public folder is used to add an asset to your project, outside of the module system (handled by webpack). webpack

does not read the public folder. If you put a file into the public folder, it will not be processed by webpack. Instead it will be

copied into the build folder untouched. To reference assets in the public folder, you need to use an environment variable

called PUBLIC_URL

When you run create-react-app the following files are generated

https://github.com/reduxjs/cra-template-redux
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://yarnpkg.com/

The public folder is special for a few reasons. Perhaps the most important thing to know is that Webpack
does not read the public folder; it will only read the files inside the src folder (you can overcome this
with the %public_url% tag). This means that you CANNOT put JS, CSS or any other assets in the public
folder, since it will not be compiled during the build process.

Notice that the script loading elements <script src=”.. /> will be created by the build process and added
to the pages.

Index.html
This file holds the HTML template of our app. React will simply inject code into the <div
id=”root”></div> element

Manifest.json

This file exists to provide app and extension info, such as name, icon and description, in json format. This comes in handy when

your website behaves like an app, for instance when a user adds your website to their mobile homescreen. The manifest.json

file will be compiled and added as a link tag in the head of the HTML template in index.html: <link rel=”manifest”

href=”%PUBLIC_URL%/manifest.json”>

%PUBLIC_URL% tag

During the build, assets prefixed with the %PULIC_URL% tag will be recognized and compiled. However this is NOT best practice

and should be used only when necessary.

Favicon.ico

An ico file is just a file that browsers recognize is an icon, and the file contains multiple sizes and colors depths that the computer

can scale accordingly.

To reference images in public folder

1.
You can also do

2.

1. By default react will know its in public directory.

I also saw this in devias kit pro. Static is a folder inside the public
folder. Actually this is the first approach where you reference
something directly. Have in mind that you define the public/static
folder as static files folder (a staticfiles dir in django) so that its
contents are collected along with the other static files and placed
in your static files service location. You define the url of this
location as your-domain/static/ so any file that is referenced
directly to /static/ instead of being imported in javascript, will be
served by the static server.

Concurrent rendering
New in react 18

Micro frontends
Have in mind this pattern. The front end is composed of many mini frontends. Decomposing the front end monolith to individual

components generated by individual back end services.

Pros:

• A micro frontend is more modular and reusable.

• A micro frontend is more scalable.

• The micro frontend is more maintainable.

• Independent and Faster development.

• Testing separate applications are easy.

• Different front-end technologies can be used for different projects(like React, Angular, Vue.js, etc).

Cons:

• Testing the entire application is not easy.

• Sharing code, state(data), etc is not easy.

Module federation (Module Federation | webpack)
Module Federation allows a JavaScript application to
dynamically load code from another application and in
the process, share dependencies. If an application
consuming a federated module does not have a
dependency needed by the federated code, Webpack
will download the missing dependency from that
federated build origin.

NextJS
It can render the react app in the server and serve the rendered html page. After that initial page is served, client side rendering

takes over as a traditional react app. So you have server rendered content for bots and highly interactive content for users.

What Next. js does is to provide structure and better rendering features to React. As stated before, it works on top of React since

it names itself as "The React Framework for Production". So, it works as an engine for React's capabilities, using many tools and

resources already used by React like Redux or Hooks.

Problems with client side rendered content

• Not reliably indexed by all search engines or read by social media link bots

• Slower to first contentful paint

React + django

Architecture options
There are three main ways in which you can set up django with a front end framework.

1. Django based front end approach: React in its own "frontend" Django app: load a single HTML template and let React

manage the front end (difficulty: medium)

2. The decoupled approach: Django REST as a standalone API + React as a standalone SPA (difficulty: hard, it involves JWT for

authentication)

3. Mix and match: mini React apps inside Django templates (difficulty: simple, but not so maintainable in the long run)

1st vs 2nd approach

The difference between the 1st and 2nd approach is that in the 2nd one you just have a django project that doesn’t serve nor a

single django template neither static files. It just serves the json responses through django rest framework. The javascript code

that renders the front end (which might be an html page or a mobile app or whatever else) is served by a separate service which

just serves static files (the front end code). When a user visits your url the dns lookup ends up in a request to this front end

service which sends the javascript code that creates the front end. This javascript code fetches data from the separate django

service. One main side effect of this approach is that you can’t use session based authentication. Instead you have to use token

based authentication, for example JWT.

Mixed approach

Use the mixed approach when:

◼ the website doesn’t need much Javascript

◼ SEO is a big concern and you can't use Node.js for Server Side Rendering

Decoupled approach

An ideal way to host React app is to serve it over a CDN like CloudFront and have it make API calls to the backend API, possibly

on a different subdomain. For small apps (in terms of scope and usage), this is an overkill.

Pros:

A decoupled approach offers flexibility but imposes challenges:

⚫ search engine optimization (SSR or die)

⚫ authentication

⚫ logic duplication (errors and form validation)

⚫ more testing

⚫ more developers

These are good signs that you will benefit from decoupling:
◼ lot of JS-driven interactions

◼ you're building a mobile app

◼ you're building a dashboard for internal use

Use the django based approach when:
◼ you're building an app-like website

◼ you're ok with Session based authentication

◼ there are no SEO concerns

◼ you're fine with React Router

In fact keeping React closer to Django makes easier to reason about authentication. since the JavaScript bundle continues to live

inside a Django template you can use Django's built-in authentication. You can exploit the Django builtin authentication for

registering and logging in users. Use the good ol' Session authentication and do not worry too much about tokens and JWT.

Serve your react app from S3 (optionally with AWS Amplify)

In decoupled approach you need a web server for hosting and serving the static files of your react app. You can host and serve

your app through S3. Notice that there is a managed service called AWS Amplify, one main feature of which is to do just that

setting up also ci/cd automatically and it’s very easy to set up. You just connect your repo through the interface and you are

ready. It serves the app through a CDN.

https://docs.djangoproject.com/en/3.0/topics/auth/

Project Setup
Backend

◼ mkdir my-project-dir (rmdir /S a_folder to delete folder and contents)

◼ cd my-project-dir

◼ virtualenv venv

◼ venv/Scripts/activate (activate the virtual env in the my-project-dir folder)

◼ python --version

◼ pip install django

◼ mkdir project_src

◼ cd project_src

◼ django-admin startproject project_name_project ./

You could simply do django-admin startproject project_name without creating the “project_src” folder at all. I do this

because you have the django project inside the “project_src” folder and the folder containing the settings file is named

“project_name” instead of “project_src”. Not a big difference, just for clarity.

◼ python manage.py startapp my-app

◼ python manage.py migrate

◼ python manage.py runserver

◼ python manage.py createsuperuser (to be able to login to admin)

◼ pip install djangorestframework django-cors-headers

◼ pip freeze > requirements.txt

◼ git init

◼ Create .gitignore file from gitignore.io

◼ git add .

◼ git commit -m “backend initial commit”

◼ Open project_src in pycharm and set up the interpeter to the virtual environment’s python.exe

Frontend django app

1. Use a react template (like devias kit)

◼ cd project_src

◼ Create manually a folder inside your django project, named “web_client”

◼ Copy the template code inside this folder. Ideally the template source code is created with create-react-app and redux-

toolkit and has the proper structure.

◼ cd to “web_client” and run npm install (to install template’s dependencies)

◼ Add "proxy": "http://localhost:8000" to your package.json of the web_client folder (or use an env var instead)

◼ Add CORS headers for development (this is a backend thing)

You do this either creating a custom django middleware or using corsheaders django app

◼ Get the csrf token from the cookie (or from the server) when your react app mounts, store it in redux state and add it

to the post requests made by your react app.

◼ [production] Configure Django's staticfiles to serve the JS and CSS from create-react-app's build folder

◼ [production] create a django view to serve the index.html entry point

2. Create a react-app from scratch with create-react-app

◼ npx create-react-app web_client --template redux

◼ Delete the .git folder in the newly created web_client folder

if you don’t want to have a separate git repository inside the already existing django project git repository. The web

client code would be part of the django project repository.

Decoupled Frontend with create-react-app

◼ npm install -g create-react-app

◼ cd my-project-dir_env

◼ create-react-app frontend (in the same dir with backend for uniformity)

◼ (A git repo is initialized automatically by create-react-app)

◼ npm start

Decoupled frontend with manual react setup

https://www.youtube.com/watch?v=GieYIzvdt2U&list=PLillGF-RfqbbRA-CIUxlxkUpbq0IFkX60&index=2

https://medium.com/better-programming/build-a-hello-world-react-app-with-a-django-api-backend-8ba814d89115

https://github.com/facebookincubator/create-react-app/blob/master/packages/react-scripts/template/README.md#proxying-api-requests-in-development
https://www.youtube.com/watch?v=GieYIzvdt2U&list=PLillGF-RfqbbRA-CIUxlxkUpbq0IFkX60&index=2
https://medium.com/better-programming/build-a-hello-world-react-app-with-a-django-api-backend-8ba814d89115

Tips

If there is a problem with immer which is defined as dependency to multiple packages causing problems apply this fix:

https://github.com/rogeriochaves/npm-force-resolutions and use a new immer version

Update to the latest version of immer.

Development and Production Frontend django app
Development Workflow
⚫ python manage.py runserver -> Runs Django

⚫ yarn start on frontend/ folder -> Runs Create

React App 's server locally

Production Features
⚫ React builds are done on Heroku, no need to track build artifacts

⚫ The app is available on the root URL

⚫ The app generated by CRA (create-react-app) is untouched. Even

Git Submodules can be used to link the project

⚫ Static assets are served with GZIP compression

⚫ Both pip packages and node_modules are cached in Heroku,

thereby speeding up subsequent deploys.

⚫ Even Session authentication can be used because it is being served

from the same domain and no CORS issues

https://www.fusionbox.com/blog/detail/create-react-app-and-django/624/

In development you run the two servers manually. In production the react app and api would be served from the same domain.

The react app (the static files that make it) would be served by django as static files. Django will also serve the entry point of the

react app (index.html) with a django view in a catch all url.

Development workflow

1. Add "proxy": "http://localhost:8000" to your package.json of the frontend app. By default any request like

fetch('/api/todos') will be made to the url from which the react app was served.

Run the two dev servers. Access the frontend like you do in a regular create-react-app project, at http://localhost:3000. Any API

requests the frontend makes to http://localhost:3000 will get proxied to Django. So, on our code, we could do something like:

axios.get('/api/datasets/') and it will proxy the request to http://localhost:8000/api/datasets.

Keep in mind that proxy only has effect in development (with npm start), and it is up to you to ensure that URLs like /api/todos

point to the right thing in production.

Notice: This works as long as the frontend uses only relative URLS, and doesn't follow links provided by the backend. If the

frontend code does follow API links, they will be directly requested from runserver (http://localhost:8000), making them cross-

origin requests. To make this work we'll need a way to add CORS headers only in local development.

2. Add CORS headers for development

https://github.com/rogeriochaves/npm-force-resolutions
https://www.fusionbox.com/blog/detail/create-react-app-and-django/624/
https://github.com/facebookincubator/create-react-app/blob/master/packages/react-scripts/template/README.md#proxying-api-requests-in-development
http://localhost:8000/api/datasets

Use it only in the development settings. In
production react app and api will be served
from the same domain.

Django production settings

(Django serves the built index.html page and the static files)

1. Build the react app

2. Configure Django's staticfiles to serve the JS and CSS from create-react-app's build

In production settings configure the static file settings.

Now collectstatic will automatically find the static build artifacts, and
deploy them however you have configured staticfiles. The only thing left
is to serve the entry point to the React app, index.html.

3. Serve the built by react index.html file on all paths

First add the build folder as a template dir

Create a template view from the built index.html file for all urls

The re_path matches all except '/'
The last path matches the ‘/’

Notice:

The entry point of the react app is the index.html file. This is also a static file but it can’t be served as the rest of the static files.

The static files are served from the static_url (for example my_domain.com/static/). but the index html has to be served at the

root (my_domain.com). So we have to serve that file through a django view.

Notice:

This view must be installed with a catch-all urlpattern in order for pushState routing to work. Why? You visit example.com. The

server serves the index.html and react fills the page. You visit example.com/users/list by pressing a link. The react app fetches

data from server and renders a page normally. But if you reload the page or paste it in a new tab, then you will get the raw json

data or an html with the data (using django rest content negotiation). You will not see the page you should see that is created by

javascript using react. So you serve the index.html in all pages, and JavaScript has an access to the current page’s URL so we may

resolve the path and map it to some logic in our app, allowing us to render the correct page with react.

Notice:
Another article uses the never_cache decorator to add headers to a
response so that it will never be cached. But index.html doesn’t change.
The bundle that generates the actual index view might change, but not the
index.html. I don’t think its necessary to use never_cache.

This is an alternative technique for step 5.

The view in myapp/views.py that serves the index.html

Now once we configure out deployment process to
run the create-react-app build script, users who
visit our site will be served the React app. Other
Django URLs like the API and admin will still
continue to work, as long as their urlpatterns come
before the catch all.

myapp/urls/py

In a django template you define {% load static %} in the template that you require the static files. How do you define that the

static files must be served in the case of a react app django app? When the react app is build, the index.html that is created loads

the main js file among others. It does the job of loading the necessary static files.

(notice that when the static files of the react app are served by django you must find a way to make the build so that the

index.html load the static files from the django static url, like src=/static/js/main.js. Do you?) no. The build process builds a

static folder inside the build folder. In your django settings you just have to add that static folder to your statifiles_dir. This way

these static files will be served by your static url which usually is your-domain/static/. the build process creates the index.html

and the static folder in the same directory. So the index.html file loads the scripts with a relative path like <script src=”/static/…”.

this is translated by the browser to your-domain/static/ (which should be defined as your static url)

Deployment

Notice that you either build locally and upload to heroku the already build files or you upload to heroku the react app source

files and build in the heroku server (automatically). this requires additional configurations since you must have node installed

in your heroku servers so that it builds the source code.

Heroku multiple buildpacks (django + react)

Heroku uses buildpacks to transform deployed code into slugs which can be executed by Dynos (server instances on Heroku).

We’ll be needing two buildpacks. One for Node and another for Python. Our app would run on a Python server, even though we’ll

use Node/NPM to build/bundle the React frontend. So the Python buildpack will be the main one in our config. The main

buildpack determines the process type of the Heroku app.

The buildpack for the primary language of your app should always be the last buildpack in the list. This ensures that defaults for

that primary language are applied instead of those for another language, and allows Heroku to correctly detect the primary

language of your app. In case of react + django nodejs buildpack should be first and python buildpack second. Another reason

that the node buildpack must be first, is that it needs to build the source code so that the python buildpack will use the built files.

(We need to tell the Node.js buildpack to build the React app after it has installed Node and NPM. We can do this by adding the

build command npm run build in the postinstall hook in the package.json)

https://devcenter.heroku.com/articles/buildpacks

Have also in mind the django_heroku library (built by heroku) that automatically configures your django settings for heroku

serving static files with whitenoise.

Deployment sequence (commit source code and build in heroku)

1. Configure django production settings as described above (static files, index template)

Have in mind that “When a Django application is deployed to Heroku, $ python manage.py collectstatic --noinput is run

automatically during the build. ”

2. Configure package.json (node version, npm run build after commit)

"postinstall": "npm run build" or ("heroku-postbuild": "npm run build)

The postinstall runs after the dependencies installation. This way when heroku
installs the package dependencies, it will also build the package.

3. Create a root package.json file

You have to create a root level package.json file for
your project. The reason is that heroku doesn’t
currently support installing a node package when the
package is a subfolder of the project root. In this case
the subfolder is the “web_client_devias_pro”. one
solution would be to move its contents under the
root directory but then you wouldn’t have the client
code cleanly put inside its own folder.

So you create a root level package.json making the root itself a node package. This is a simple node package the job of which

is to install another node package (the subfolder package). This way the heroku nodejs buildpack installs the root package

and then the subfolder one.

4. Define the Procfile

5. Define runtime.txt for python version on heroku (for example python-3.8.2)

6. Create new heroku app

7. Set the buildpacks for your heroku app
heroku buildpacks:set heroku/python -a my-app

heroku buildpacks:add --index 1 heroku/nodejs -a my-app

8. Provision an add on for example a db (heroku addons:create heroku-postgresql:hobby-dev -a my-app)

9. Set up env variables for your heroku app

10. Add a remote tracking branch for heroku (cd to your git repo and heroku git:remote -a algorithms-project)

Have in mind that when you have a heroku remote, you can type heroku cli commands without specifying the app. It extracts it

from the current repo’s heroku remote.

11. Push to heroku main (git push heroku master)

https://librenepal.com/article/django-and-create-react-app-together-on-heroku/ in this deployment static files are served by

whitenoise and the react app is build by heroku. This is achieved by the nodejs buildpack that you define as the first one. The

second one is the python buildpack.

Deploying with Kubernetes

https://datagraphi.com/blog/post/2021/2/10/kubernetes-guide-deploying-a-machine-learning-app-built-with-django-react-

and-postgresql-using-kubernetes this author has some useful posts in general

serving static files
aws s3 behind cloudfront cdn

https://www.sebastian-lechner.info/serving-your-django-apps-static-and-media-files-with-s3-and-cloudfront/

whitenoise

With a couple of lines of config WhiteNoise allows your web app to serve its own static files, making it a self-contained unit that

can be deployed anywhere without relying on nginx, Amazon S3 or any other external service. (Especially useful on Heroku,

OpenShift and other PaaS providers.). WhiteNoise works with any WSGI-compatible app but has some special auto-configuration

features for Django.

WhiteNoise will only work with storage backends that store their files on the local filesystem in STATIC_ROOT (so the static files

are stored in the local file system of the django server. What happens if you scale out the web process? I guess that every instance

would be able to serve the static files from its own local filesystem). It will not work with backends that store files remotely, for

instance on Amazon S3.

Notice that if you care about performance and efficiency then you should be using WhiteNoise behind a CDN like CloudFront. If

you’re doing that then, because of the caching headers WhiteNoise sends, the vast majority of static requests will be served

directly by the CDN without touching your application, so it really doesn’t make much difference how efficient WhiteNoise is.

Notice that whitenoise is not suitable for serving user uploaded files (media files). it only checks for static files at startup and so

files added after the app starts won’t be seen. For that you have to use django-storages to store and serve them from elsewhere.

In a nutshell: Well, if adding a CDN is not on your agenda, then I would recommend using AWS S3 + Django-Storages instead of

Whitenoise and Django-Compressor. One of the major benefits of using Whitenoise is the ability to integrate with a CDN. Without

this benefit, the much simpler approach with AWS S3 serving both static and media files would make more sense.

Tips
Show django rest errors in react

Show the server generated error message instead of the generic bad request 400

https://redux-toolkit.js.org/api/createAsyncThunk#handling-thunk-results

https://github.com/reduxjs/redux-toolkit/issues/390

Google Search error.response.data unwrapresult react

https://librenepal.com/article/django-and-create-react-app-together-on-heroku/
https://datagraphi.com/blog/post/2021/2/10/kubernetes-guide-deploying-a-machine-learning-app-built-with-django-react-and-postgresql-using-kubernetes
https://datagraphi.com/blog/post/2021/2/10/kubernetes-guide-deploying-a-machine-learning-app-built-with-django-react-and-postgresql-using-kubernetes
https://www.sebastian-lechner.info/serving-your-django-apps-static-and-media-files-with-s3-and-cloudfront/
https://redux-toolkit.js.org/api/createAsyncThunk#handling-thunk-results
https://github.com/reduxjs/redux-toolkit/issues/390

The thunks generated by createAsyncThunk will always return a resolved promise (never a rejected one) with either

the fulfilled action object or rejected action object inside, as appropriate. Redux Toolkit exports an unwrapResult function that

can be used to extract the payload (in case of a fulfilled action object) or error (in case of rejected) from the action, and return

or throw the result appropriately.

We said that the thunk returns a resolved promise, with either a fulfilled or a rejected action object. The fulfilled or rejected

action object is created by the payload creator. Notice that the payload creator can return a rejected promise (the thunk can ’t).

When it does, the thunk returns a rejected action object with a error attribute (action.error) that contains an automatically-

serialized version of the error.

However, to ensure serializability, everything that does not match the SerializedError interface will have been removed from it

(only name, message, stack and code attributes of the error are used). If you need to customize the contents of

the rejected action, you should catch any errors yourself, and then return a new value using

the thunkAPI.rejectWithValue utility. Doing return rejectWithValue(errorPayload) will cause the rejected action to use that

value as action.payload

corsheaders

If you have two different servers for frontend and backend you need to add corsheaders package to django.

Csrf token

Csrf attack

let's say the vulnerable website is the vulnerable.com and the user has visited a website called malicious.com where he

submitted a form. this form sent a post request to vulnerable.com (instead of to malicious.com). Since the request was made

with the victim's browser, it sent any cookies the browser had for vulnerable.com. One of those cookies contained the

authentication details for the victim. So the post request in vulnerable.com server was executed as if it came from the victim.

Adding a csrf token created for the victim by vulnerable.com to all unsafe requests to vulnerable.com, will protect the victim in

the above case, because the malicious website will not have access to that csrf token and the request will not contain it.

• a cookie-less REST endpoint is completely immune from CSRF attacks

The jwt can be stored either in local storage or in a cookie. An http only cookie is the more secure option since this way you are

less vulnerable to XSS attacks. But if you store it in a cookie, then this cookie will be sent along with every request which means

that you need csrf protection. In this case, the client should get the csrf from an endpoint and then send it along with any request

(either as a cookie, or as part of the request data). The easiest way to implement this is to read the csrf and store it in a cookie

that is automatically sent along with any request to the auth server’s url and is read by Django’s middleware.

Why CSRF?

It really boils down to the browsers ability to automatically present login credentials for any request by sending along cookies.

If a session id is stored in a cookie the browser will automatically send it along with all requests that go back to the original

website. This means that an attacker doesn't actually have to know authentication details to take an action as the victim user.

Rather, the attacker just has to trick the victims browser into making a request, and the credentials to authenticate the request

will ride along for free.

An authentication system based on tokens (JWT or random) stored in cookies is vulnerable to CSRF attacks, because cookies are

sent automatically to server in each request and an attacker could build a harmful url link to your site.

It would be worthy to note that a script from www.cute-cat-pictures.org normally does not have access to your CSRF token

from www.mybank.com because of HTTP access control. But as I understood if the mybank.com sets the header Access-Control-

Allow-Origin: * to it’s responses then any origin could have access to the csrf token.

Django protects against CSRF attacks by generating a CSRF token in the server, send it to the client side, and mandating the client

to send the token back in the request header. The server will then verify if the token from client is the same as the one generated

previously; if not it will not authorize the request.Attackers won’t be able to access this token due to protection by the Same-

Origin Policy.

Csrf protection is not necessary for securing API endpoints

Rest API endpoints have a very important difference from other requests: they are specifically stateless and should never

accept/use data from either a cookie or session. As a result, a REST API that sticks to the standard is automatically immune to

such an attack. Even if a cookie was sent up by the browser, any credentials associated with the cookie would be completely

ignored. Authentication of calls to a REST API are done in a completely different fashion. The most common solution is to have

some sort of authentication key (an OAuth Token or the like) which is sent along in the header somewhere or possibly in the

request body itself.

Since authentication is application-specific, and since the browser itself doesn't know what the authentication token is (since it

is set in the header by javascript), there is no way for a browser to automatically provide authentication credentials even if it is

somehow tricked into visiting the API endpoint. As a result, a cookie-less REST endpoint is completely immune from CSRF

attacks.

Notice: If you use session authentication (which is the default authentication backend) then only authenticated requests require

CSRF tokens and anonymous requests may be sent without CSRF tokens.

Django sets the csrf token to a cookie (and reads it from it), for all views from the csrf middleware.

Notice csrf protection is only required for unsafe methods which means that a GET request on a protected view, will not create

a csrf token and cookie.

Apart from that, if you want to use the csrf token in the template (for example to have a hidden csrf field in a form) you have to

use the {% csrf_token %} template tag. To use the value outside of django templates, you have to use the built in method for

reading (or creating if none exists) the csrf token:

from django.middleware.csrf import get_token

csrf_token = get_token(request)

This function generates a new csrf token if it doesn’t already exist in the request, and adds it to the request.META dictionary.

Another middleware function sets this value to a cookie.

When you enable csrf protection for a view then the csrf cookie will be set by that protected view.

During development where the main index page is served by the node server you have no csrf cookie if no django view is called.

https://stackoverflow.com/questions/5207160/what-is-a-csrf-token-what-is-its-importance-and-how-does-it-work?rq=1

https://security.stackexchange.com/questions/166724/should-i-use-csrf-protection-on-rest-api-endpoints

https://stackoverflow.com/questions/45945951/jwt-and-csrf-differences

Webpack bundle for big projects

When you use the django based front end approach and your project is big containing a lot of js libraries and a lot of js code then

the webpack bundle might end up bigger than 200KB which is considered a fair size limit. In cases like this you need to set up

webpack to split the bundle to chunks (using splitChunks). This creates though an issue on how to load these chunks in your

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://stackoverflow.com/questions/5207160/what-is-a-csrf-token-what-is-its-importance-and-how-does-it-work?rq=1
https://security.stackexchange.com/questions/166724/should-i-use-csrf-protection-on-rest-api-endpoints
https://stackoverflow.com/questions/45945951/jwt-and-csrf-differences

django templates (if you use the django based front end approach). why exactly is not yet clear to me. A 200kb of compressed

javascript code might correspond to 700kb of uncompressed code.

This helper might be a
solution

Have in mind that you need the trailing / in the urls for example example.com/api/leads/4/

To use variables in JSX in a string you need to use `string_${id}` instead of “ “

When you copy generic html code to a react component replace the class html attribute with its corresponding className JSX

attribute

In webpack.config.js there are the commands that
we run (npm dev and npm build) to compile the js
files into the defined output. Notice that in dev we
can add watch so that it watches for changes in the
files and re compiles on every change. (this is not
hot reloading)

◼ Gitignore.io

Go to gitignore.io type django and will create a gitignore file specifically for django.

Redux

Tips
Data flow

Initial setup:

⚫ A Redux store is created using a root reducer function

⚫ The store calls the root reducer once, and saves the return value as its initial state

⚫ When the UI is first rendered, UI components access the current state of the Redux store, and use that data to decide what

to render. They also subscribe to any future store updates so they can know if the state has changed.

Updates:

⚫ Something happens in the app, such as a user clicking a button

⚫ The app code dispatches an action to the Redux store, like dispatch({type: 'counter/increment'})

⚫ The store runs the reducer function again with the previous state and the current action, and saves the return value as the

new state

⚫ The store notifies all parts of the UI that are subscribed that the store has been updated

⚫ Each UI component that needs data from the store checks to see if the parts of the state they need have changed.

⚫ Each component that sees its data has changed forces a re-render with the new data, so it can update what's shown on the

screen

Generic tips

• An action is a js object with a type property. An action creator is a function that returns an action object

• An action is dispatched with the redux dispatch function which gets an action creator.

• A reducer takes the current state and an action and returns the resulting state

• The reducers must be pure functions that don’t mutate the state directly. So instead of pushing a new element to the array we

create a brand new array containing all the previous state in addition to the new element

• Any action dispatched from any view will trigger all the reducers (combined reducers) being invoked to check the action type.

• When we pass an object like {counter: counterReducer} to combinereducers, we add a state.counter section to the store

• we get a store value using the useSelector hook offered from react-redux

• Redux actions and state should only contain plain JS values like objects, arrays, and primitives. Don't put class instances, functions,

or other non-serializable values into Redux

• React-redux It is binding library that connects redux with react. It handles the creation of the store, subscribing to the store, checking

for updated data, and triggering a re-render for subscribed components. Components are subscribed to the tsore with the use of

the react-redux hooks useSelector, useDispatch, useStore. useSelector is used to read a specific state (a member from the store

object)

• useDispatch() is used to dispatch an action.

• useSelector reads values from the store object. the useSelector hook will run

o whenever the function component renders

o whenever an action is dispatched and the redux store is updated

If the selector returns a different value than last time, useSelector will make sure our component re-renders with the new value.

• You may call useSelector() multiple times within a single function component. Each call to useSelector() creates an individual

subscription to the Redux Store. Because of the React update batching behavior used in React Redux v7, a dispatched action that

causes multiple useSelector()s in the same component to return new values should only result in a single re-render.

• We can create selector functions to be invoked by useSelect to read the store. Write them in the slice file. If store format changes,

you only change the selectors code. you can also use memoized selectors. meoizing selectors is achieved usually through the

reselect package

• Redux provides a third-party extension point between dispatching an action, and the moment it reaches the reducer. People use

Redux middleware for logging, crash reporting, talking to an asynchronous API, routing, and more

• Async-thunk is a middleware that lets you write async logic that interacts with the store. you dispatch thunk function creators. They

are written in the slice file.

• Notice that the typical logic of async data fetching is a start action that triggers isloading, the request is made and depending on

the request result we get a success or failure action. You can have only a success action if you don’t care about isloading and failure.

• This pattern is provided by default by the createAsyncThunk of the redux-toolkit. It uses 3 actions pending, fulfilled, and rejected

(posts/fetchPosts/pending, posts/fetchPosts/fulfilled, posts/fetchPosts/rejected).

• You can keep a status in your state and modify it based on these actions, to control your UI. The typical status values are idle,

loading, succeeded, failed. In createAsyncThunk the status is idle only before the first time the component makes a call. After the

call the status would be “succeeded” or “failed”. If the call is made again (without reload the page) the status would switch directly

to “loading”.

• Redux Toolkit has a function called createSlice, which takes care of the work of generating action type strings, action creator

functions, and action objects (and the slice reducer function, the function that checks action types and modifies the state

accordingly).

• You can only write "mutating" logic in Redux Toolkit's createSlice and createReducer because they use Immer inside! If you

write mutating logic in reducers without Immer, it will mutate the state and cause bugs!

Call thunks asynchronously (todo..)

I don’t use unwrap
result. I use the
rejectWithValue inside
the asyncThunk. So
could I use a typical
synchronous function
and call?

axios. Show server errors instead of javascript errors

https://github.com/axios/axios/issues/960
The error.response is particularly useful since you can use
the server error data.

The error.message is present in all cases as I saw.

Intro
Have in mind that you can avoid the extra boilerplate of redux and its additional complexity in small projects just by using

context or passing down props (or using hooks).

The way Redux works is that it essentially stores all the dynamic information of an app in a single JavaScript object. Whenever

a part of the app needed to show some data, it would request the information from the server, update the single JavaScript object,

and then show that data to the users.

Redux was great for solving the problem of keeping your front-end application in sync, however it brought it’s own problems:

Extra code, stale data (keeping all data in one place you may have unwanted data appearing in your app from a previous state),

steep learning curve

https://github.com/axios/axios/issues/960

Redux is a very simple library that enables predictable atomic state changes. While the API is tiny and easy to learn, it gives you

a lot of power and solves many of the problems when handling the application state and sharing data between components.

Redux is a state container for JavaScript apps, often called a Redux store. It stores the whole state of the app in an immutable

object tree.

One of the important concepts of redux:

The state can only be changed by dispatching an action. The state tree is never mutated directly instead you use pure functions

called reducers. A reducer takes the current state and an action and returns the resulting state. (The fact that the Redux state

changes predictably opens up a lot of debugging possibilities. For example, using time travel makes it possible to travel back and

forth between different states).

The reducers must be pure functions that don’t mutate the state directly. So instead of pushing a new element to the array we

create a brand new array containing all the previous state in addition to the new element. Redux is deterministic (the current

state is only dependent on the previous actions) and that makes the behavior of the app very predictable and less prone to bugs.

Redux is in itself not written specifically for React. It can be used with other frameworks such as Angular, Ember or Vue.js. The

easiest way to use Redux with React is the official React Redux binding library. With this library it’s easy to bind the Redux state

and actions to props.

In apps using React Redux the components are often separated into two categories, components and containers. This is to

distinguish components that use the state tree and dispatch actions from dumb components that are only used for presentation.

This is one of the strengths of Redux, by separating the state from the graphical presentation we can make tiny reusable

components.

Redux is a great library for managing the state of React apps. Storing the whole state in a single tree is very useful since it avoids

having multiple sources of truth.

Getting all users with Redux

1. Create the component to show a list of users (no problems here).

2. Create the fetch call to the API.

3. Add a new field in the state.

4. Add a new action which updates the state with data.

5. Add a new thunk method which executes the fetch call and then updates the state using our new actions.

6. Add the thunk function to our component using connect() which would wrap it in a dispatch function.

7. Extract the data from the Redux state, again by using connect() .

8. Declare the thunk function and the extracted data field in my component’s prop types.

9. Call the thunk method in the componentDidMount() function.

10. Finally render the data in the DOM.

A lot of work!

Overview

Lets say you have a movies app with 5 components. One of them is the MovieList which
renders a list of all movies. So it must have access to the actual movies data. So the data must
reside in this component. If the Movie component needs the data too, then we can pass data
to it from MovieList via props. But if the Search component needs the data, we have no way
to pass it from MovieList since data can only flow in one direction. The solution would be to
lift data up to the App component and pass it down as props to the lower components. But it
would be more appropriate for the movies data to live in the Movie component. Apart from
that if we want to have some actions to the data too, like deleting a movie in the Movie
component for example, we couldn’t do it directly in the Movie component since a component
must never modify its props. We should do it from a function of the App component (which
contains the data). So we have to have a delete function in the App component and pass it
down to the Movie component along with the data.
So as a project starts to become big things start to get really complex really fast. That’s what
redux tries to solve by storing the data separately in a distinct object which all components
can access and modify, obeying though to specific rules.

Actions

An action is a function that returns an object. Actions are a declaration of what you want to do.

An action creator is a function that creates and returns an action object. We typically use these so we
don't have to write the action object by hand every time. Increment and decrement are action creators.

We usually write the action’s type string like "domain/eventName", where the first part is the feature
or category that this action belongs to, and the second part is the specific thing that happened.

Reducers

A reducer is a function that receives the current state and an action object, decides how to update the state if necessary, and

returns the new state: (state, action) => newState.

You create one reducer for each state object that you want to store in the global store
object. For example in this case we have a counterReducer that modifies a state
variable which is used as a counter and a loggedReducer that modifies its state which
is used as a loggedIn variable (true/false).

Pass a value to the reducers

You modify the action so that it accepts a variable and add an attribute usually called
payload to the action object. Then you can access that value in your reducer.

Rules of reducers

⚫ They should only calculate the new state value based on the state and action arguments

⚫ They are not allowed to modify the existing state. Instead, they must make immutable updates, by copying the

existing state and making changes to the copied values.

⚫ They must not do any asynchronous logic or other "side effects"

Store

The store is the global state object which you create with the createStore() function
that gets a reducer as an argument.

The global store object is not only modified but also created by the reducers. If you
have many reducers you have to combine them with the combineReducers()
function and pass the combined result to the createStore() function. This will add
two attributes to the global store object, counter and isLogged as they are defined
in the combineReducers().

When we pass in an object like {counter: counterReducer}, that says that we want
to have a state.counter section of our Redux state object, and that we want
the counterReducer function to be in charge of deciding if and how to update
the state.counter section whenever an action is dispatched.

Notice

Components can't talk to the Redux store directly, because we're not allowed to import it into component files. so we get a store

value using the useSelector hook offered from react-redux.

Notice:
Redux actions and state should only contain plain JS values like objects, arrays, and
primitives. Don't put class instances, functions, or other non-serializable values into
Redux!

So we store the date as a string

❖ Setting up store with redux-toolkit

We use the configureStore function. Redux allows store setup to be customized with different kinds of plugins ("middleware"

and "enhancers"). configureStore automatically adds several middleware to the store setup by default to provide a good

developer experience, and also sets up the store so that the Redux DevTools Extension can inspect its contents.

The current Redux application state lives in an object called the store . The store is
created by passing in a reducer, and has a method called getState that returns the
current state value

Dispatching

The Redux store has a method called dispatch. The only way to update the state is to call store.dispatch() and pass in an action

object. The store will run its reducer function and save the new state value inside, and we can call getState() to retrieve the

updated value. You can think of dispatching actions as "triggering an event" in the application. Something happened, and we

want the store to know about it. Reducers act like event listeners, and when they hear an action they are interested in, they

update the state in response.

We typically call action creators to dispatch the right action:

Selectors

It would be nice if we didn't have to keep rewriting our components every time we made a change to the data format in our

reducers. One way to avoid this is to define reusable selector functions in the slice files, and have the components use those

selectors to extract the data they need instead of repeating the selector logic in each component. That way, if we do change our

state structure again, we only need to update the code in the slice file.

Selectors are functions that know how to extract specific pieces of information from a store state value. As an application grows

bigger, this can help avoid repeating logic as different parts of the app need to read the same data:

Then use them in the components

Notice the difference in using selectAllPosts and selectPostById
that gets one additional argument apart from the state.

Notice that the selector should return the whole path to the
state value, including the name defined for it in the store, so that
it can be used from everywhere.

You can also create "memoized" selectors that can help improve performance, which we'll look at in a later part of this tutorial.

react-redux module
It is binding library that connects redux with react.

Integrating Redux with a UI. Using Redux with any UI layer requires the same consistent set of steps:

1. Create a Redux store

2. Subscribe to updates

3. Inside the subscription callback:

a) Get the current store state

b) Extract the data needed by this piece of UI

c) Update the UI with the data

4. If necessary, render the UI with initial state

5. Respond to UI inputs by dispatching Redux actions

While it is possible to write this logic by hand, doing so would become very repetitive. In addition, optimizing UI performance

would require complicated logic. The process of subscribing to the store, checking for updated data, and triggering a re-render

can be made more generic and reusable. A UI binding library like React Redux handles the store interaction logic, so you don't

have to write that code yourself.

Two main things we have to do is to provide the redux store to the app and then connect the store with the react components.

1. Providing the store object to the app

Index.js

It provides a Provider component that wraps your react App
component and accepts the store object as an argument. This
way we make the store available to our app.

Any React components that
call useSelector or useDispatch will be talking to the Redux
store we gave to the <Provider>.

2. Connecting to components

There are two ways to do this:

⚫ The legacy way to do this is using the connect() function of react-redux. Connect() is a higher order component. Check the

react-redux tutorial.

⚫ React Redux now offers a set of hook APIs as an alternative to the existing connect() Higher Order Component. These APIs

allow you to subscribe to the Redux store and dispatch actions, without having to wrap your components in connect().

these hooks are the useSelector, useDispatch, useStore

Using hooks

While React includes several built-in hooks like useState and useEffect, other libraries can create their own custom hooks that

use React's hooks to build custom logic.

React components can read data from the Redux store using the useSelector hook from the React-Redux library.

https://blog.isquaredsoftware.com/presentations/workshops/redux-fundamentals/ui-layer.html#/4
https://reactjs.org/docs/hooks-custom.html

In case that you use a separate selectors.js file to store all of your
selectors:

import {getTodoList} from ‘./selectors’;

const todo_list = useSelector(getTodosList}

(This is an example using hook apis).
We can select and modify the global store from any react
component. To do so we use the useSelector() and
useDispatch() functions of react-redux.

useSelector is used to select an attribute from the store,
which we assign to a variable that we can then use in our
component.

useDispatch() is used to dispatch an action.

The selector getTodoList is a function that gets the state as
argument and returns an object from it.

Local component state is kept in useState hooks

useSelector

Our components can't talk to the Redux store directly, because we're not allowed to import it into component files.

But, useSelector takes care of talking to the Redux store behind the scenes for us. If we pass in a selector function, it

calls someSelector(store.getState()) for us, and returns the result.

If we had access to a Redux store in a component, we could retrieve the current counter
value as:

Since we haven’t access to store inside the component we use the useSelector

Any time an action has been dispatched and the Redux store has been updated, useSelector will re-run our selector

function. If the selector returns a different value than last time, useSelector will make sure our component re-renders

with the new value.

https://react-redux.js.org/api/hooks#equality-comparisons-and-updates

const result: any = useSelector(selector: Function, equalityFn?: Function)

The selector function which is the first argument of the useSelector hook, is approximately equivalent to the mapStateToProps

argument to connect conceptually. Note: The selector function should be pure since it is potentially executed multiple times and

at arbitrary points in time. The selector will be called with the entire Redux store state as its only argument.

The selector will be run

⚫ whenever the function component renders (A cached result may be returned by the hook without re-running the selector

if it's the same function reference as on a previous render of the component.)

⚫ useSelector() will also subscribe to the Redux store, and run your selector whenever an action is dispatched. If it returns a

new reference value the component will rerender.

It has some differences with the mapStateToProps though, see docs.

- the default comparison is a strict === reference comparison, not a ==

https://react-redux.js.org/api/hooks#equality-comparisons-and-updates
https://react-redux.js.org/using-react-redux/connect-mapstate
https://react-redux.js.org/using-react-redux/connect-mapstate
https://en.wikipedia.org/wiki/Pure_function

- others

Note that some extra care should be taken if we want to use memoized selectors (meoizing selectors is achieved usually through

the reselect package). See the notes.

useDispatch

Similarly, we know that if we had access to a Redux store, we could dispatch actions using action creators,

like store.dispatch(increment()). Since we don't have access to the store itself, we need some way to have access to just

the dispatch method. The useDispatch hook does that for us, and gives us the actual dispatch method from the Redux store:

This hook returns a reference to the dispatch function from the Redux store. You may use it to dispatch actions as needed.

Note

When passing a callback using dispatch to a child component, it is recommended to memoize it with useCallback (Returns

a memoized callback), since otherwise child components may render unnecessarily due to the changed reference.

useStore

This hook returns a reference to the same Redux store that was passed in to the <Provider> component. This hook should

probably not be used frequently. Prefer useSelector() as your primary choice.

Custom context

The <Provider> component allows you to specify an alternate context via the context prop. This is useful if you're building a

complex reusable component, and you don't want your store to collide with any Redux store your consumers' applications might

use.

Using connect()

React Redux provides a connect function for you to read
values from the Redux store (and re-read the values when
the store updates). The connect function takes two
arguments, both optional:

mapStateToProps: called every time the store state
changes. It receives the entire store state, and should return
an object of data this component needs.
mapDispatchToProps: this parameter can either be a
function, or an object.
⚫ If it’s a function, it will be called once on component

creation. It will receive dispatch as an argument, and

should return an object full of functions that

use dispatch to dispatch actions.

⚫ If it’s an object full of action creators, each action

creator will be turned into a prop function that

automatically dispatches its action when called. Note:

We recommend using this “object shorthand” form.

https://en.wikipedia.org/wiki/Memoization

⚫ mapDispatchToProps implementation

Let’s work on <AddTodo /> first. It needs to
trigger changes to the store to add new todos.
Therefore, it needs to be able to dispatch actions
to the store.
By passing the action to connect, our component
receives it as a prop, and it will automatically
dispatch the action when it’s called. Notice now
that <AddTodo /> is wrapped with a parent
component called <Connect(AddTodo) />.
Meanwhile, <AddTodo /> now gains one prop:
the addTodo action.

We also need to implement the handleAddTodo function to let it dispatch the addTodo action and reset the input. Now

our <AddTodo /> is connected to the store. When we add a todo it would dispatch an action to change the store.

⚫ mapStateToProps implementation

The <TodoList /> component is responsible for rendering the list of todos. Therefore, it needs to read data from the store. We

enable it by calling connect with the mapStateToProps parameter, a function describing which part of the data we need from

the store.

The mapStateToProps returns an object in the form
{ “todos”: [list of todo items]}

What the todo item is is not important in this
context. In this case this list is returned by the
selector function getTodos() that lives in the
selectors.js

The TodoList react component takes an argument
which is an object, from which it reads the object’s
“todos” argument (it does so with object
destructuring).

This way every time the store is modified, the
mapStateToProps function of all connected
components is executed and in case of TodoList
component, the component is re-rendered if there
are changes in the “todos” list.

Notice that even in cases in which you use
connect() without the mapDispatchToProps
function you receive props.dispatch that you
may use to manually dispatch actions.

Middleware
Redux provides a third-party extension point between dispatching an action, and the moment it reaches the reducer.

People use Redux middleware for logging, crash reporting, talking to an asynchronous API, routing, and more. Middleware

extend the store and allow you to:

⚫ Execute extra logic when any action is dispatched (such as logging the action and state)

⚫ Pause, modify, delay, replace, or halt dispatched actions

⚫ Write extra code that has access to dispatch and getState

⚫ Teach dispatch how to accept other values besides plain action objects, such as functions and promises, by intercepting

them and dispatching real action objects instead

Suppose that we want to log to the console every action and its corresponding resulting state. We also want to send any error in

dispatching an action to a third party service like sentry. These things are done after we dispatch an action. We could just repeat

them any time we call dispatch but this is not a very good approach. One approach would be to monkeypatch the dispatch

method of the store object. But the best way is by using a middleware mechanism.

Monkey patching chain

Here is a nice pattern for easily monkey patching an object (replacing one of its methods)

If these functions are published as separate modules,
we can later use them to patch our store:

Using middleware mechanism

The middleware function in ES5 ES6 equivalent

Using the logger middleware (and the crashReporter)

This is the applyMiddleware
implementation (with some differences).

It first obtains the final, fully
wrapped dispatch() function, and returns a
copy of the store using it.

Now, whenever an action is dispatched, it will pass from all the applied middleware where each one of them will do its stuff.

Redux toolkit
Redux toolkit

In the same spirit with create-react-app, sets up some things by default.

⚫ Provides the createSlice function that gives the possibility to write redux slices (using the Immer package among others)

Apart from the slices, you put in the slice file the thunks and the selectors.

⚫ Provides configureStore function to set up the store. It adds certain middleware by default (thunk and others)

⚫ Provides createAsyncThunk API that generates thunks that automatically dispatch those "start/success/failure" actions

for you.

⚫ Provides the createSelector function of reselect for creating memoized selectors

⚫ Provides the createEntityAdapter function for normalizing the way items are stored in the global state

{ ids: [], entities: {} }

Redux Slices

A "slice" is a collection of Redux reducer logic and actions for a single feature in your app, typically defined together in a single

file. The name comes from splitting up the root Redux state object into multiple "slices" of state.

In the previous example, state.users, state.posts, and state.comments are each a separate "slice" of the Redux state.

Since usersReducer is responsible for updating the state.users slice, we refer to it as a "slice reducer" function.

Every time we create a new slice, we need to add its reducer function
to our Redux store.

Redux Toolkit has a function called createSlice, which
takes care of the work of generating action type strings,
action creator functions, and action objects (and the slice
reducer function, the function that checks action types
and modifies the state accordingly).
All you have to do is define a name for this slice, write an
object that has some reducer functions in it, and it
generates the corresponding action code automatically.
The string from the name option is used as the first part
of each action type, and the key name of each reducer
function is used as the second part. So, the "counter" name
+ the "increment" reducer function generated an action
type of {type: "counter/increment"}.
In addition to the name field, createSlice needs us to pass
in the initial state value for the reducers, so that there is
a state the first time it gets called. Here the state will be
counter.value. {counter: {value: 0}}

The slice.actions return action creators
The slice.reducer returns the slice reducer function. It is
imported to the file that creates the store, to be added to
the store.

createSlice automatically generates action creators with the same names
as the reducer functions we wrote (functions that return action objects).
You can run them at any point in time and the action will be returned. I
guess that if you don’t dispatch it the action will not be dispatched and will
not have any effect on the UI.

It also generates the slice reducer function that knows how to respond to
all these action types:
Here we manually run a reducer function with a given state and action
object.

We dispatch the automatically created action creators (that have the same
name with the defined reducer objects)

Dispatching an automatically created action with a payload.

You can only write "mutating" logic in Redux Toolkit's createSlice and createReducer because they use Immer inside! If you write

mutating logic in reducers without Immer, it will mutate the state and cause bugs!

extraReducers

However, there are times when a slice reducer needs to respond to other actions that weren't defined as part of this

slice's reducers field. (for example the actions dispatched automatically by the createAsyncThunk function). We can do that

using the slice extraReducers field instead. More details on the making async calls notes…

Prepare callback

Previously in the onSavePostClicked function of the appPost
component we had the logic that creates the action’s payload
object. Here the logic was simple enough (just calculating the
id of the new post with nanoid) but it could be more complex.
This is a problem. If we want to dispatch this action from
another component, we would have to copy that logic there
too.
The solution is to put this logic inside the action creator
function. But with createSlice we don’t explicitly write the
action creator, it is created automatically.
The solution to this problem is the prepare callback defined in
the reducer of the createSlice. This function receives the initial
payload from the component (here title, content) and returns
the actual payload that will be used by the reducer. So inside it
we can put any logic that modifies the action’s payload before
it is passed to the reducer.

redux-thunk

Typically written in the slice files.

With a plain basic Redux store, you can only do simple synchronous updates by dispatching an action. Middleware extends the

store's abilities, and lets you write async logic that interacts with the store. As I understand, redux-thunk middleware

purpose is to give you the possibility to dispatch a js function instead of an action object. the function will be processed by the

middleware, will do the async call and dispatch the necessary action objects.

By itself, a Redux store doesn't know anything about async logic. It only knows how to synchronously dispatch actions, update

the state by calling the root reducer function, and notify the UI that something has changed. Any asynchronicity has to happen

outside the store.

Thunks

A thunk is a specific kind of Redux function that can contain asynchronous logic (setTimout, Promises and async/await). Thunks

are written using two functions:

⚫ An inside thunk function, which gets dispatch and getState as arguments and dispatches an action creator

⚫ The outside creator function, which creates and returns the thunk function

We can use thunks the same way we use a typical Redux action creator

Once the thunk middleware has been added to the Redux store, it
allows you to pass thunk functions directly to store.dispatch. (so you
dispatch a thunk creator instead of an action or an action creator)

Notice that the same action creator could be written as:
const logAndAdd = amount => (dispatch, getState) => {…}

A thunk action creator is a function that returns a thunk
function. To run the creator you have to dispatch it. A creator
like this, is called a thunk and allows us to perform async logic.
It can be dispatched like a regular action.

Thunks typically dispatch plain actions using action creators. For
consistency with dispatching normal action objects, we typically
write thunk functions as thunk action creators, which return the
thunk function. Notice that they can take arguments that can be used
inside the thunk.

Thunks are typically written in "slice" files. createSlice itself does not have any special support for defining thunks, so you should

write them as separate functions in the same slice file. That way, they have access to the plain action creators for that slice, and

it's easy to find where the thunk lives.

Notice that the typical logic of async data fetching is a start action that triggers isloading, the request is made and depending on

the request result we get a success or failure action. You can have only a success action if you don’t care about isloading and

failure. But this pattern is provided by default by the createAsyncThunk of the redux-toolkit

Examples

I guess that userAPI.fetchById uses axios or something like it, to do the call.

On a form submit which on submit makes an async call, you can’t just simply dispatch a success action object on the submit

event. You must dispatch a thunk function that makes the async call and dispatch the actual action on success (when the promise

is resolved with success). This is done with thunk.

Dispatch an action when a promise is resolved

Although it is not explicitly visible, this is possible using redux-thunk.

This arrow syntax means
var getLeads = function getLeads (){

return function(dispatch){

 axios.get(…).then(…).catch()

 }

}

You should dispatch the thunk function creator.
<button onClick={ () => dispatch(getLeads()) }> get leads </button>

The previous format is what is used. Why not the following? I think the reason is that an

arrow function preserves “this”.
<button onClick={ dispatch(getLeads() }> get leads </button>

In the App component

We have an action file that makes an axios call and dispatches an action type on
success. This function is a thunk. We call it from the main App component’s didMount
lifecycle method.

Action file
export const loadUser = () => (dispatch, getState) => {

axios

.get(“/api/auth/user”, config)

.then(res => { dispatch({ type:USER_LOADED, payload: res.data}); })

.catch(err => { console.log(err.data) })

createAsyncThunk

In these examples they use a custom client.js app to make the calls. We could replace that with axios (Probably with no additional

changes).

When we make an API call, we can view its progress as a
small state machine that can be in one of four possible states:
⚫ The request hasn't started yet

⚫ The request is in progress

⚫ The request succeeded, and we now have the data we

need

⚫ The request failed, and there's probably an error

message

We could track that information using some booleans,
like isLoading: true, but it's better to track these states as a
single enum value. A good pattern for this is to have a state
section that looks like:

We can use this information to decide what to show in our UI
as the request progresses, and also add logic in our reducers
to prevent cases like loading data twice.

Notice

In createAsyncThunk the status is idle only before the first time the component makes a call. After the call the status would be

“succeeded” or “failed”. If the call is made again (without reload the page) the status would switch directly to “loading”.

1. Creating the thunk that makes the call

Redux Toolkit's createAsyncThunk API generates thunks that automatically dispatch those "start/success/failure" actions for

you.

We create the thunk in the slice file.

createAsyncThunk accepts two arguments:
A string that will be used as the prefix for the
generated action types
A "payload creator" callback function that
should return a Promise containing some data,
or a rejected Promise with an error

The payload creator will usually make an AJAX call of some kind, and can either return the Promise from the AJAX call directly,

or extract some data from the API response and return that. We typically write this using the JS async/await syntax, which lets

us write functions that use Promises while using standard try/catch logic instead of somePromise.then() chains.

When dispatched, the thunk will:

⚫ dispatch the pending action

⚫ call the payloadCreator callback and wait for the returned promise to settle

⚫ when the promise settles:

◼ if the promise resolved successfully, dispatch the fulfilled action with the promise value as action.payload

◼ if the promise resolved with a rejectWithValue(value) return value, dispatch the rejected action with the value passed

into action.payload and 'Rejected' as action.error.message

◼ if the promise failed and was not handled with rejectWithValue, dispatch the rejected action with a serialized version

of the error value as action.error

⚫ Return a fulfilled promise containing the final dispatched action (either the fulfilled or rejected action object)

The thunk’s actions:

⚫ posts/fetchPosts/pending

calling dispatch(fetchPosts()), the fetchPosts thunk will first dispatch the pending action type

⚫ posts/fetchPosts/fulfilled

Once the Promise resolves, the fetchPosts thunk takes the response.posts array we returned from the callback, and dispatches

this action type

⚫ Posts/fetchPosts/rejected

2. Handling the built in thunk actions

We use the extraReducers field of the createSlice
function to handle actions not created by the defined
reducers. In this case to handle the actions created
by the createAsyncThunk.

I guess that fetchPosts.pending returns
“fetchPosts/pending” and combined with the “posts”
slice name you get the full action type.

3. Make the async call from a component and show content based on loading state

Since we want to fetch this data
when <PostsList> mounts, we need to import the
React useEffect hook.

It's important that we only try to fetch the list of posts
once. If we do it every time the <PostsList> component
renders, or is re-created because we've switched
between views, we might end up fetching the posts
several times. We can use the posts.status enum to help
decide if we need to actually start fetching, by selecting
that into the component and only starting the fetch if the
status is 'idle'

1. Component mounts by the initial page load

2. State posts Status is idle, so fecthPosts async thunk is

dispatched.

3. This first dispatches the posts/fetchPosts/pending

action and the posts.status becomes loading

4. The component is rendered, showing content based

on loading status.

5. When the data is fetched from the server the

posts/fetchPosts/fulfilled action is dispatched.

6. State posts Status changes to succeeded and posts

state is updated

7. The component is rerendered since both posts and

status coming from useSelector hooks, change.

8. It shows content based on succeeded status value.

Tips

axios proposes a specific handling of errors that allows you to easily handle and show the server generated error message. See

the axios chapter

In this case if there is an error with the axios request (for example CORS related) the async thunk (created by createAsyncThunk)

will dispatch a “rejected” action which you can handle on the reducer (for example by filling an error state variable). the error

is attached to the action.payload.message variable returned by the async thunk. If there is a success you access what is returned

by the payload creation function of createAsyncThunk with action.payload.

Whatever you return, response.data in this case (the json data returned by the server), it is accessed with action.payload.

Don’t do this, use the first approach

If you use a try catch block though, then if there is an error with the axios request the error will be caught and no “rejected”

action will be dispatched. A “succeeded” action will be dispatched instead. So this means that you need to write your logic with

this in mind. Don’t do this, use the first approach and let createAsyncThunk handle the process.

Sending data asynchronously to the backend

Create the thunk that makes the call and then handle the fulfilled action

Notice that we use the returned post, which
contains any backend generated fields like the
id.

Making the call from the component (and show content based on loading state)

In this example they don’t use the global loading enum in the redux
store (just inside this component as a local state).

In the case of using a global loading state, we don’t use neither a try
- catch block nor a .then chain for the call thunk. We just dispatch
the (created with createAsyncThunk) thunk. This will dispatch its
complete or fail actions to which we listen to with our reducers and
handle them there by modifying the global “loading” state
accordingly. Then in the component we show content based on the
loading state.

In the second case we have no global loading state (You should
decide if it would be in the global state or not based on the same
criteria as with any other variable). We have only one reducer that
listens to the thunk’s fulfilled action and modifies the items state.
Since there is no global loading state we need another way to show
content based on success or failure of the call. This is achieved with
a try-catch block using the unwrapResult function provided by the
redux toolkit. In this case the status has 2 states: idle and pending.
We could add failed and succeeded in the try catch block if we
prefer.

Notice: The thunk created by createAsyncThunk only accepts one
argument. This argument becomes the first argument of the
payload creation callback. In this example the argument is an object
{title, content, user:userId} which becomes the InitialPost object in
the addNewPost payload creation callback.

(Notice the canSave pattern, every(Boolean))

When we call dispatch(addNewPost()), the async thunk returns a Promise from dispatch. We can await that promise here to

know when the thunk has finished its request. But, we don't yet know if that request succeeded or failed.

unwrapResult()

createAsyncThunk handles any errors internally, so that we don't see any messages about "rejected Promises" in our logs. It

then returns the final action it dispatched: either the fulfilled action if it succeeded, or the rejected action if it failed. Redux

Toolkit has a utility function called unwrapResult that will return either the actual action.payload value from a fulfilled action,

or throw an error if it's the rejected action. This lets us handle success and failure in the component using normal try/catch logic

(without the need to use a global loading enum state).

payload_creation_callback(whatever passed when calling the thunk , the special thunkAPI object)

For createAsyncThunk thunks, you can only pass in
one argument, and whatever we pass in becomes
the first argument of the payload creation callback.
The second argument to our payload creator is
a thunkAPI object containing several useful
functions and pieces of information: dispatch and
getState, extra, requestId, signal, rejectWithValue.

Here we get the getState object form the thunkAPI
object using object destructuring

Notice: If you're writing a thunk by hand instead of using createAsyncThunk, the thunk function will get (dispatch, getState) as

separate arguments, instead of putting them together in one object.

Data fetching without Redux

Notice how much simpler it is…

Have in mind though that data fetching will be performed with Suspense in the
future.

“Longer term we'll discourage this pattern because it encourages race
conditions. Such as — anything could happen between your call starts and ends,
and you could have gotten new props. Instead, we'll recommend Suspense for
data fetching which will look more like”

Performance optimization
Solutions to performance problems can be

1. Memoization (reselect from redux-toolkit)

2. Normalization (createEntityAdapter from redux-toolkit)

Some issues

⚫ An action is dispatched two times

Notice: have this structure of rendering items in mind

Notice: Our fake API is already sending back the notification
entries with isNew and read fields, so we can use those in
our code.

This works but:

This works, but actually has a slightly surprising bit of behavior. Any time there are new notifications (either because we've just

switched to this tab, or we've fetched some new notifications from the API), you'll actually

see two "notifications/allNotificationsRead" actions dispatched. Why is that?

Let's say we have fetched some notifications while looking at the <PostsList>, and then click the "Notifications" tab.

The <NotificationsList> component will mount, and the useEffect callback will run after that first render and

dispatch allNotificationsRead. Our notificationsSlice will handle that by updating the notification entries in the store. This

creates a new state.notifications array containing the immutably-updated entries, which forces our component to render again

because it sees a new array returned from the useSelector, and the useEffect hook runs again and

dispatches allNotificationsRead a second time. The reducer runs again, but this time no data changes, so the component doesn't

re-render.

⚫ A component is re-rendered without data change

If we press the get-notifications button, the navbar will be re-rendered to show the number of the newly fetched notifications

but also the UserPage component is rerendered which is something we didn’t expect. (You can see what components are

rendered after an action by using the react devTools profiler).

We know that useSelector will re-run every time an action
is dispatched, and that it forces the component to re-render
if we return a new reference value.
We're calling filter() inside of our useSelector hook, so that
we only return the list of posts that belong to this user.
Unfortunately, this means
that useSelector always returns a new array reference,
and so our component will re-render after every action
even if the posts data hasn't changed!.

The solution is memoization

Memoization

What we really need is a way to only calculate the new filtered array if either state.posts or userId have changed. If

they haven't changed, we want to return the same filtered array reference as the last time. This idea is called "memoization". We

want to save a previous set of inputs and the calculated result, and if the inputs are the same, return the previous result instead

of recalculating it again.

Memoized selectors are a valuable tool for improving performance in a React+Redux application, because they can help us avoid

unnecessary re-renders, and also avoid doing potentially complex or expensive calculations if the input data hasn't changed.

Reselect package

Reselect is a library for creating memoized selector functions, and was specifically designed to be used with Redux. It has

a createSelector function that generates memoized selectors that will only recalculate results when the inputs change. Redux

Toolkit exports the createSelector function, so we already have it available.

createSelector takes one or more "input selector"
functions as argument, plus an "output selector"
function.
When we call selectPostsByUser(state,
userId), createSelector will pass all of the arguments
into each of our input selectors. Whatever those input
selectors return becomes the arguments for the output
selector.

In this case the first input selector returns posts and the
second userId. These two arguments are passed to the
output selector.

Calling the selector from the component

⚫ Another problem: A component with many children is rerendered without data change as before. Children are rerendered

too.

Data returned by a useSelector is not actually changed, but a new reference is returned. This is the origin of the problem. React's

default behavior is that when a parent component renders, React will recursively render all child components inside of it!.

Possible solutions:

◼ Use React.memo()

We could wrap the <PostExcerpt> component in React.memo(), which
will ensure that the component inside of it only re-renders if the props
have actually changed. This will actually work quite well

https://github.com/reduxjs/reselect
https://redux-toolkit.js.org/api/createSelector
https://blog.isquaredsoftware.com/2020/05/blogged-answers-a-mostly-complete-guide-to-react-rendering-behavior/
https://blog.isquaredsoftware.com/2020/05/blogged-answers-a-mostly-complete-guide-to-react-rendering-behavior/
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo

◼ Another option is to rewrite <PostsList> so that it only selects a list of post IDs from the store instead of the

entire posts array, and rewrite <PostExcerpt> so that it receives a postId prop and calls useSelector to read the post

object it needs. Unfortunately, this gets tricky because we also need to have all our posts sorted by date and rendered

in the right order.

◼ The last option is to find some way to have our reducer keep a separate array of IDs for all the posts, and only modify

that array when posts are added or removed, and do the same rewrite of <PostsList> and <PostExcerpt>. This

way, <PostsList> only needs to re-render when that IDs array changes. Conveniently, Redux Toolkit has

a createEntityAdapter function that will help us do just that.

Normalization

⚫ You've seen that a lot of our logic has been looking up items by their ID field. Since we've been storing our data in arrays,

that means we have to loop over all the items in the array using array.find() until we find the item with the ID we're looking

for. Realistically, this doesn't take very long, but if we had arrays with hundreds or thousands of items inside, looking

through the entire array to find one item becomes wasted effort. What we need is a way to look up a single item based on

its ID, directly, without having to check all the other items. This can be achieved with data "normalization".

"Normalization" means no duplication of data, and keeping items stored in a lookup table by item ID.

"Normalized state" means that:
⚫ We only have one copy of each particular piece of data in our state,

so there's no duplication

⚫ Data that has been normalized is kept in a lookup table, where the

item IDs are the keys, and the items themselves are the values.

⚫ There may also be an array of all of the IDs for a particular item type

(This is the shape of state that createEntityAdapter creates)

This makes it easy to find a particular user object by its ID, without
having to loop through all the other user objects in an array:

Redux Toolkit's createEntityAdapter API provides a standardized way to store your data in a slice by taking a collection of

items and putting them into the shape of { ids: [], entities: {} }. Along with this predefined state shape, it generates a set of reducer

functions and selectors that know how to work with that data.

This has several benefits:

➢ We don't have to write the code to manage the normalization ourselves

➢ createEntityAdapter's pre-built reducer functions handle common cases like "add all these items", "update one item", or

"remove multiple items". setAll, addMany, upsertOne, removeMany

➢ createEntityAdapter can keep the ID array in a sorted order based on the contents of the items, and will only update that

array if items are added / removed or the sorting order changes.

Prebuilt reducers for common cases, like setAll, addMany, upsertOne, and removeMany

todo

createEntityAdapter with createAsyncThunk

Error and Message handling
Notistack is a good library for this purpose.

Error handling

It is very useful to have any error, for example axios call errors, to be presented in the UI through a dedicated component. This

means that the errors must be handled as any other piece of data that comes from the server. They must be added to the global

redux state, and passed to the components that need them.

react-alert

It is a nice 3rd party npm module that provides a nice alert react component. It
offers a Provider (as react-redux does) with which we wrap our main App
component. Notice that the outer most Provider must be the react-redux one.
React router would be inside the AlertProvider.

The err.response.data is an object created by the json response that contains the
error messages.

After the error is received we dispatch the action

Actually instead of externally dispatching an action in every axios call, its better
to create an action that returns the GET_ERROR action type and dispatch it
whenever we want to get errors.

Message handling

You can use the same alert component to show custom messages instead of errors. To do so, you can create a message reducer

that handles one action, the CREATE_MSG and trigger the action on buttons pressed or whenever you want. This action is caught

by the messages reducer which modifies the message state, which is passed as props to the alert component and on change the

component is rerendered and shows the message in the alert window. (the GET_MESSAGES action is not needed in this

implementation)

Messages reducer Message actions

Notice that here we just return the action object and we dispatch it
manually after the response from the server is received (after
pressing a button for example)

The messages reducer updates the state. This state is passed as props to the alert component which will be rerendered and will

show the message in the alert window.

Essential tips

Notes
Async useEffect

useEffect can’t be an async function.
But you can of course call an async
function from within the useEffect
function.

Providers Pattern

Index.js App.js Notice that the Router provider wraps the contents
of the app component in the app file while the react-
redux Provider wraps the App component in the
index file.

nanoid

Notice: they use nanoid here because they don’t really save data to a back end service. If we did then the id would be generated

by the backend and we would get the newly created item back from which we will use its id.

We could write some code that would figure out what the next incrementing ID number should be, but it would be better if we

generated a random unique ID instead. Redux Toolkit has a nanoid function we can use for that.

They use it on item-created action. I don’t like this idea. I would prefer to use the real database id of the created item, so that the

id of the item in the database and the id of the item in the redux store are the same. With naonid the ids would be different.

Although the difference will be corrected when there is a got-items action (items were retrieved from the database).

Notice: If an action needs to contain a unique ID or some
other random value, always generate that first and put it in
the action object. Reducers should never calculate random
values, because that makes the results unpredictable.

A select button

Handling dates

A TimeAgo component

Notice that the timestamp (passed as prop) is a string.
new Date().toISOString()

date-fns
import { sub } from 'date-fns'

date: sub(new Date(), { minutes: 10 }).toISOString()

subtract minutes from this Date object

Sort by chronological order

Emoji

Major actions

Getting items

See fetchPosts in Making async calls chapter

Items list example

Creating an item

A more generic term is “posting data asynchronously to the server”. see See addPost in Making async calls chapter

Editing an item

What about the actual post request to the server? Where is it?

You are not doing the item editing like it is described in this example. You do it with createAsyncThunk function (similarly with

creating an item) where an updatePost() async thunk automatically dispatches the post/updatePost/pending,

post/updatePost/fulfilled and post/updatePost/rejected actions. The updatePost async thunk is dispatched by the onclick

handler. The useHistory.push action described in this example takes place in the state.posts.postAddedStatus = succeeded case

(which is set by the post/updatePost/fulfilled action)

Continues …

…continuing

Notice the useHistory
hook. They are using it
to externally change
the url after the item
has been edited to
redirect to another
page.
Important: in react
router v6 it is
recommended to use
the useNavigate hook
instead. See the
relative chapter.

Misc
Dispatch actions outside of react components

In order to dispatch and action from outside of the scope of React.Component you need to get the store instance and

call dispatch on it

When to store something in the global store

In a React + Redux app, your global state should go in the Redux store, and your local state should stay in React components. If

you're not sure where to put something, here are some common rules of thumb for determining what kind of data should be put

into Redux:

⚫ Do other parts of the application care about this data?

⚫ Do you need to be able to create further derived data based on this original data?

⚫ Is the same data being used to drive multiple components?

⚫ Is there value to you in being able to restore this state to a given point in time (ie, time travel debugging)?

⚫ Do you want to cache the data (ie, use what's in state if it's already there instead of re-requesting it)?

⚫ Do you want to keep this data consistent while hot-reloading UI components (which may lose their internal state when

swapped)?

Typical workflow

Get items

https://reactjs.org/docs/react-component.html
https://redux.js.org/api-reference/store#dispatch-action

We call getLeads when the component mounts, the data is fetched with an axios call, the action is dispatched, the reducer catches

it, it gets the fetched data attached to the action as payload, updates the redux state with it, passes the particular state attribute

(that refers to the leads list) to the component as a prop (with the mapStateToProps function and propTypes). Since the prop is

modified, the component is rerendered, modifying the UI that now reflects the new redux state that reflects the backend state.

(So the backend data changes first, and then this change is eventually reflected to the UI by dispatching an action)

Delete an item

We call deleteItem(id) when a button is pressed, the axios call deletes the item in the server, the action is dispatched, the items

reducer catches it, it gets the deleted id from the action (was defined as payload), modifies the redux state with the remaining

items (excluding the deleted one), passes the particular state attribute to the component as prop. Since the prop is modified, the

component is rerendered modifying the UI that now reflects the new redux state that reflects the backend state.

action

reducer

Button

Notice that he doesn’t simply do
onClick = { this.props.deletetLead(lead.id) }

He binds the call instead. I’m not sure why. Maybe it is because it is
inside a table that renders the leads list which is fetched
asynchronously.

Redux state and localstorage

The auth token is stored in local storage too. How is this in sync with redux state? We must do it externally?

Notice how the initial state gets its value from local storage. On logout the token is removed from local storage and the state is

externally set to null, so we must explicitly enforce synchronization.

React hooks vs Redux

Advantages of storing the state in Redux:

1. You can access and modify it globally

2. It persists even after your component is unmounted

Advantages of storing the state in the component:

1. You can have multiple components with different values in the state, which may be something you want

2. ...Or you could even have multiple hooks of the same type in one component!

3. You don't need to switch between files. Depending on how your code is organized, Redux can be split into 3 files + 1 file for

the component which uses it - while this can help keep your code well-structured for complex use cases, it can be an overkill

for keeping track of a simple state. Having to switch between multiple files to work on one component can reduce your

productivity (I don't like having to keep track of 4 tabs in my IDE for every feature I work on).

4. (Also, hooks are new and cool.)

React context vs redux

If you're only using Redux to avoid passing down props, context could replace Redux - but then you probably didn't need Redux

in the first place. Context also doesn't give you anything like the Redux DevTools, the ability to trace your state

updates, middleware to add centralized application logic, and other powerful capabilities that Redux enables.

React Redux uses context internally but it doesn’t expose this fact in the public API. So you should feel much safer using context

via React Redux than directly because if it changes, the burden of updating the code will be on React Redux and not you.

redux-devtools-extension

A very useful browser extension. To use
it install it and add this line to your
store.

Project structure

From the redux official website.
they organize the application by features (not by actions, components, reducers etc). Each
feature folder contains the features components and the redux slice.

The left example from the react-redux tutorial,
has a distinct redux folder. Notice that in this
example there is a distinct selectors.js file that
selects/extracts data from the store. It contains
our functions for selecting todos by id, todos list
etc. Also the store is a distinct file.

The right is another approach from a youtube
video. The basic structure is created by the
create-react-app. Then we can create folders for
the actions and the reducers and have one
reducer per file.

You might see the constants.js also as types.js

Layout components

any layout components, for example the header navbar, or a sidebar, or the footer etc could be placed in a layout folder within

the components folder.

Selectors

We recommend encapsulating any complex lookups or
computations of data in selector functions (in a distinct
file). In addition, you can further optimize the
performance by using Reselect to write “memoized”
selectors that can skip unnecessary work.

Redux Middleware

This is an example of setting up the redux store for your
project.

The createStore function gets a rootreducer, then the initial
state and then any middleware.

Since we use the redux devtools we define the middleware
inside the composeWithDevtools function of the devtools
module.

dispatch prop by default

If you don't specify the second argument to connect(), your component will receive dispatch by default.

Can I call store.dispatch?

It's an anti-pattern to interact with the store directly in a React component, whether it's an explicit import of the store or

accessing it via context. Let React Redux’s connect handle the access to the store, and use the dispatch it passes to the props to

dispatch actions.

A todo app overview

The React UI Components

We have implemented our React UI components as follows:

https://github.com/reduxjs/reselect

TodoApp is the entry component for our app. It renders the header, the AddTodo, TodoList, and VisibilityFilters components.

AddTodo is the component that allows a user to input a todo item and add to the list upon clicking its “Add Todo” button:

It uses a controlled input that sets state upon onChange.

When the user clicks on the “Add Todo” button, it dispatches the action (that we will provide using React Redux) to add the todo

to the store.

TodoList is the component that renders the list of todos:

It renders the filtered list of todos when one of the VisibilityFilters is selected.

Todo is the component that renders a single todo item:

It renders the todo content, and shows that a todo is completed by crossing it out.

It dispatches the action to toggle the todo's complete status upon onClick.

VisibilityFilters renders a simple set of filters: all, completed, and incomplete. Clicking on each one of them filters the todos:

It accepts an activeFilter prop from the parent that indicates which filter is currently selected by the user. An active filter is

rendered with an underscore.

It dispatches the setFilter action to update the selected filter.

constants holds the constants data for our app.

And finally index renders our app to the DOM.

You would have a todosReducer (that handles certain action types like ADD_TODO, GET_TODOS, DELETE_TODO etc.), an

authRecuder, an errorReducer to bringing errors to the componenets,

It is a good convention that the action types exist in a distinct file called types.js or constants.js.

Fetching data from the server is done in the actions and the fetched data are added as payload to the actions.

…state

A reducer returns the whole state not only the state property that
the action modifies. This is why we return …state, and then the modified
property (which will override the property in the …state)

getState()

Have in mind that you can access the global state within an action
with the getState function

Packages and Templates

List
1. axios package for ajax requests

2. styled-components for writing actual CSS code to style your components

3. Path-to-RegExp package

4. classnames package: A simple JavaScript utility for conditionally joining classNames together.

5. clsx (an alternative to classnames, smaller and faster)

6. redux-devtools-extension

7. reselect package: A selector library (eg. create memoized selectors for redux)

8. redux-devtools

9. redux-observable

10. redux-thunk (handle API request in Action creators) a middleware used to make asynchronous requests from the actions.

11. redux-persist (allow you to save store data in localStorage and rehydrate on refresh)

12. date-fns (handle dates)

13. Formik (build forms without tears)

14. react-helmet (for writing and managing html head content)

15. prop-types (for type checking of props)

16. yup (The JavaScript Object Schema Validator and Object Parser to use with React)

17. Lodash (Lodash makes JavaScript easier by taking the hassle out of working with arrays, numbers, objects, string)

18. Notistack (display notifications on your web apps)

19. Jss (a library for generating stylesheets with javascript. use JavaScript to describe styles)

20. React-jss (provides some nice features for react like theme support, lazy evaluation etc. implemented using hooks)

Material UI uses react-jss internally like in makestyles()(where the pattern is identical or the ThemeProvider.

21. Nprogress (for slim progress bars like youtube)

22. React-feather (a collection of simply beautiful open source icons for React.js)

23. https://miragejs.com/ fake backend API

24. nanoid Nano ID is a unique string ID generator for JavaScript and other languages.

25. React perfect scrollbar (it is a react component for the generic library “perfect scrollbar” with which you can customize

the scrollbar, when it appears, how it looks etc. Instead of using the default browser scrollbar)

26. React-spring (bring your components to life with simple spring animation primitives, for example useSpring hook)

27. react-router-config

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90],

Collection of React Hooks

There is a collection of community created custom hooks that you can use in your applications https://react-hooks.org/

Generic tools

loadtest, an HTTP load generator. It can be used to measure load times for your web pages.

https://miragejs.com/
https://github.com/ai/nanoid#other-programming-languages
https://react-hooks.org/
https://www.npmjs.com/package/loadtest

Templates

https://blog.logrocket.com/comparing-popular-react-component-libraries/

⚫ https://arwes.dev/ have the this SciFi like template in mind

⚫ https://github.com/siriwatknp/mui-treasury Layout for material UI https://blog.bitsrc.io/introducing-layout-for-

material-ui-329043618cb3 This is a very light layout only components library. It just provides the basic layout with

minimal requirements.

npm install @material-ui/core @material-ui/icons @mui-treasury/layout

(styled-components is needed too, @mui-treasury/mockup is a separate package that contains mockup content for header,

footer etc.)

(The old package was just mui-layout)

⚫ Bootswatch.com

They have customized bootstrap CSS files for various templates. You can select one template and use that as cdn for your

bootstrap css files. They give you a link.

⚫ Ant design https://ant.design/ (from Alibaba)

Component library that is styled already. You install it as an npm package and use the css files it provides. Then you can grap

the JSX code that describes a component and return it from one of your components.

This video shows an example around minute 24,
https://www.youtube.com/watch?v=uZgRbnIsgrA. Notice that the parent layout component that
creates the top menu, contents area etc. (named CustomLayout in this example) uses
{props.children} to show its contents. These children contents is the things it wraps, in this
example the ArticleList.

⚫ Material UI https://material-ui.com/ direct competitor of Ant design

⚫ Metronic https://keenthemes.com/metronic/

⚫ IDE plugin that creates the boilerplate code for class and function based components with a shortcut.

Using an html template

You can use an html template (for example bootstrap templates). these templates are made of html elements and use jquery. If

you want to use such a template then you download the files and copy the css, js and img folders in your public folder of your

react app. Then you reference them in your index.html file. You then have to create react components that return the html

contents of the “html components” you want to use. For example https://blog.telexarsoftware.com/integrating-a-bootstrap-

template-to-a-reactjs-application/

Using a react template

You download the files which usually are a create-react-app structure. You run npm install to install the dependencies. Then you

start writing your logic and using the already made react components. You just import them in your code and use them.

https://blog.logrocket.com/comparing-popular-react-component-libraries/
https://arwes.dev/
https://github.com/siriwatknp/mui-treasury
https://blog.bitsrc.io/introducing-layout-for-material-ui-329043618cb3
https://blog.bitsrc.io/introducing-layout-for-material-ui-329043618cb3
https://ant.design/
https://www.youtube.com/watch?v=uZgRbnIsgrA.
https://material-ui.com/
https://keenthemes.com/metronic/
https://blog.telexarsoftware.com/integrating-a-bootstrap-template-to-a-reactjs-application/
https://blog.telexarsoftware.com/integrating-a-bootstrap-template-to-a-reactjs-application/

axios
Similar with the fetch api (built in), it allows you to call an http endpoint and return a promise of the response (instead of the

response itself).

Axios is a promise-based lightweight HTTP client for the browser and Node.js. It is similar to the Fetch API as it is also used in

making network requests. Unlike fetch, it transforms all responses to JSON.

You can define custom http headers by creating an object and passing
it during the call

Axios automatically sets the `Content-Type` based on the 2nd argument to axios.post().

Pass a body with axios. Notice that we json stringify the data we want
to send. This is not necessary. Axios automatically json stringifies
javascript objects. If you happen to have a serialized JSON string that
you want to send as JSON, be careful. If you pass a string to axios.post(),
Axios treats that as a form-encoded request body so in this case make
sure you explicitly set the content type to application json with a
header.

Notice that you might have to pass null in cases of posting with an
empty body.

Axios response to a get request for json data is an object with
some attributes, one of which is the data attribute that
contains the json response which has been parsed as a
javascript object.

In this case django rest returns a list of objects by the default
get request to a model viewset.

Axios response

Axios instance?

To intercept responses

Set default headers

axios.defaults.headers.common.Authorization = `Bearer ${accessToken}`;

delete axios.defaults.headers.common.Authorization; to delete it

https://masteringjs.io/tutorials/axios/post#form-encoded-request-bodies

Show server errors instead of javascript errors

https://github.com/axios/axios/issues/960

The error.response is particularly useful since you
can use the server error data.

The error.message is present in all cases as I saw.

RTK Query
RTK Query is a powerful data fetching and caching tool.

It can eliminate the need to write any thunks or reducers to manage data fetching.

It is designed to simplify common cases for loading data in a web application, eliminating the need to hand-write data fetching

& caching logic yourself.

RTK Query is an optional addon included in the Redux Toolkit package, and its functionality is built on top of the other APIs in

Redux Toolkit.

Formik
It allows you to easily write the front end form validation logic among others, making the form creation a smoother task. You

should still externally handle (show) any error messages coming from the server.

Integrating Formik for your forms makes the following things stress minimal:

⚫ Managing form state — done automatically and locally. Packages like Redux Forms tie your form state to your state tree.

This means that your top-level reducer is called on every keystroke. This is unnecessary overhead and bad design. Form

state should be kept local.

⚫ Validating a form — using Formik’s validation handlers and (optionally) Yup. We are free to handle validation as we please

with Formik, however, instead of reinventing the wheel, Formik also supports Yup: the most widely adopted object

validation solution for React, directly into its handlers. (Read more about Yup here).

⚫ Handling form submission — easy value parsing and error formatting, via handler functions passed into Formik.

Formik gives us multiple ways to build forms: a more traditional component based workflow for building forms (<Formik

/> and <Field />components, amongst others), as well as a more abstract method using a “higher order component” with

the withFormik class wrapper, for prop and handler management.

 The Formik object also includes props for initial values, validation, and of course, onSubmit and render. Notice that in general

a render prop can be replaced by a function as an Element’s child.

https://github.com/axios/axios/issues/960
https://www.npmjs.com/package/yup
https://medium.com/@rossbulat/introduction-to-yup-object-validation-in-react-9863af93dc0e

When constructing forms, the last thing we want to worry about is how to juggle all our state, with errors, values and what not.

With Formik we do not have to — it allows us to focus on our form components and the handling of its interaction.

Formik comes with a few extra components to make life easier and less verbose: <Form />, <Field />, and <ErrorMessage />.

They use React context to hook into the parent <Formik /> state/methods.

Formik form structure

The form is constructed by a function passed to the render prop of the Formik element.

FormikProps is passed through the above render prop function, which gives us access to the state of our form (values, errors,

touched, isSubmitting etc.)

Formik hooks up our input values to state using the Field’s name prop. In the Textfield with name=’email’, the state value will

be stored as values.email. Notice that the name must much the initialValues defined name.

These arguments are returned in a formik object by the useFormik hook (that
the Formik element calls internally). They are not generated by us but by
Formik. They just need to be passed as arguments to the function of the
Formik render prop, to be used by the form.
⚫ values: contains the form’s current input values. You can access each

input value in formik.values.field-name

⚫ errors: contains the errors generated by the validate Formik prop. you

can access the errors for a field by formik.errors.field-name

⚫ touched: Formik can keep track of which fields have been visited. It

stores this information in an object called touched that also mirrors the

shape of values/initialValues (formik.touched.field-name), but each key

can only be a boolean true/false. This is useful to know which field was

last touched so to render only that field’s error.

⚫ handleBlur: In JS the blur event fires when an element has lost focus. To

take advantage of touched, we can pass formik.handleBlur to each

input's onBlur prop. This function works similarly

to formik.handleChange in that it uses the name attribute to figure out

which field to update.

⚫ isSubmitting: Formik will set this to true as soon as submission

is attempted. Notice that you have to externally call

setSubmitting(false) to your handleSubmit function..

⚫ handleChange: a change handler to pass to each input. It does the

standard process of controlled components.

⚫ handleSubmit: the onSubmit Formik prop creates the handleSubmit

function that is used in the form. Notice the arguments of the

handleSubmit function. the first is values: this contains all my form

values to work with. The second argument is an object, allowing us to

pass our props and Formik methods into our submission handler

⚫ handleReset

Validation

Validate method: The errors are generated by the Formik’s
validate prop. With the validate method we check the values fields
and can returns any errors we like. These errors can then be
accessed by the FormikProps.errors object. We can also adopt any
third party library to use as our means of validation using this
method.

By default, Formik will validate after each keystroke (change
event), each input's blur event, as well as prior to submission. It
will only proceed with executing the onSubmit function we passed
to useFormik() if there are no errors (i.e. if our validation function
returned {}

We could indeed carry out Yup validation within the
validate() prop, however, Formik is now supporting
a validationSchema prop to automatically validate your form
based on a Yup object. validationSchema will automatically
transform Yup's validation errors into a pretty object whose keys
match values and touched.

However — if you indeed need further functionality, maybe an API
request or websocket to validate an available username, we
always have the validate prop at our disposal.

Whether or not you use Yup, it is highly recommended that you
share commonly used validation methods across your application.
This will ensure that common fields (e.g. email, street addresses,
usernames, phone numbers, etc.) are validated consistently and
result in a better user experience.

Error handling

Instead of this

We can use the Formik’s ErrorMessage element

We only display this error if the email field has been
touched, and if the error exists. then we access it
via formProps.errors.email.

Input Field Types

The <Field> component by default will render an <input> component that given a name prop will implicitly grab the

respective onChange, onBlur, value props and pass them to the element as well as any props you pass to it.

https://formik.org/docs/api/formik.md#validationschema-schema----schema
https://formik.org/docs/api/formik.md#values-field-string-any
https://formik.org/docs/api/formik.md#touched-field-string-boolean

We can use other input types with Fields. In fact,
the component prop of <Field /> can
accept input, select and textarea, as strings. We can also pass
components into this prop, consequently allowing us to render any
component we wish.

Another handy Formik object is the <FieldArray />. The <FieldArray /> object helps us manage forms that adopt an iterable list

of inputs with a common subject. This method will allow us to loop through a range of values and construct Fields for each of

them.

Devias Kit Formik example

The textField is a component returned by the useField hook provided by
Formik. For example:

As you can see above, useField() gives us the ability to connect any kind input of React component to Formik as if it were

a <Field> + <ErrorMessage>. We can use it to build a group of reusable inputs that fit our needs.

Other packages

Classnames

classnames library lets you join different classes based on different conditions in a simpler way.

Without classnames

With classnames

Suppose you have 2 classes of which one
is going to get used every time but the
second one gets used based on some
condition

Yup

With Yup, we create a Yup formatted object that resembles our intended schema for an object, and then use Yup utility functions

to check if our data objects match this schema — hence validating them. https://medium.com/@rossbulat/introduction-to-yup-

object-validation-in-react-9863af93dc0e . used by Formik.

API requests, form submissions, or custom objects to handle our state. We need to make sure we are delivering data that our

components expect to work with

Yup can test whether a value is an email address with one method call. Likewise with our timestamp value — Yup can test

whether this value is a date.

https://medium.com/@rossbulat/introduction-to-yup-object-validation-in-react-9863af93dc0e
https://medium.com/@rossbulat/introduction-to-yup-object-validation-in-react-9863af93dc0e

Each method is a validator. This granularity allows us as developers to combine
as many validators as we see fit for our data validation.
Suppose we have the following data:

⚫ Check if it is valid

Or

⚫ Validate

⚫ Cast

⚫ is_valid() method returns true or false

⚫ validate() method checking whether our data is valid, and we are running validation on it (for example adding missing

fields with the default values)

⚫ cast() method that checks and fixes its types (for example convert a string to integer or date object)

⚫ concat() combine two schemas to one

⚫ abortEarly() to stop validation execution as soon as the first error crops up

⚫ trim(), uppercase(), lowercase(). min(), max(), round(), morethan(). lessthan(), truncate()

Notistack

Notistack is a Snackbar library which makes it extremely easy to display notifications on your web apps. It is highly customizable

and enables you to stack snackbars/toasts on top of one another.

1. Wrap your app inside a SnackbarProvider component. Note: If you're

using material-ui ThemeProvider, make sure SnackbarProvider is a child of

it.

2. Use the useSnackbar hook (or the withSnackbar HOC)

Material UI

Layout

Container

The container centers your content horizontally. It's the most basic layout element.

Grid

The grid system is implemented with the Grid component:

⚫ It uses CSS’s Flexible Box module for high flexibility.

⚫ There are two types of layout: containers and items.

⚫ Item widths are set in percentages, so they’re always fluid and sized relative to their parent element.

⚫ Items have padding to create the spacing between individual items.

⚫ There are five grid breakpoints: xs, sm, md, lg, and xl.

Material Design’s responsive UI is based on a 12-column grid
layout.
The layout is defined by the Grid components. The Grid
components can be either containers or items of containers.

A grid container has a Direction property which can be either
column or row. If it is row which is the default one then its items
are arranged horizontally. For example if you define xs={6} for two
items they will be next to each other. But if the direction is column
they will be one on top of the other. This is very convenient for
header and content items where you want one on top of the other.

There is also the spacing property of a container grid that defines
the spacing between its items. Defining spacing={2} means two
times the spacing value of your theme which by default is 8px.

Box

The Box component serves as a wrapper component for most of the CSS utility needs. It is an element wrapped around its content

which by itself contains no styling rules nor has any default effects on the visual output. But it's a place to put styling rules as

needed. The Box renders a div within which Box children elements are rendered.

The thing is that you can apply CSS styles to the BOX element directly via React props instead of using separate CSS files, CSS-in-

JS or inline styling for the div. You could style the div either with inline styling, or with a separate css file or with css in js (using

makeStyles and classname). instead you just define the css in the Box element (the difference with inline css is that the box

element’s props can be material UI’s things)

Notice also how padding={1} is a shorthand
for theme.spacing(1). Box provides various conveniences for
working with Material-UI themes like this.

Hidden

https://www.w3.org/TR/css-flexbox-1/

All elements are visible unless they are explicitly hidden. To ease integration with Material-UI's responsive breakpoints, this

component can be used to hide any content, or you can use it in conjunction with the Grid component.

Misc

It uses the flexbox model. A flex container is the box generated by an element with a computed display of flex or inline-flex. In-

flow children of a flex container are called flex items and are laid out using the flex layout model.

However, there is no instruction or topic about how to build layout based on them. That means you have to combine Drawer,

Header (AppBar), Content and Footer by yourself.

The theme is an object. You can override its properties to modify it. You can customize the default theme by creating a theme

object that overrides the properties of the default theme object you want to change.

Other Components

Snackbar

You can use them to display notifications

Portal

The portal component renders its children into a new "subtree" outside of current DOM hierarchy.

Notice that it is outside the root div.

Portals provide a first-class way to render children into a DOM node that exists outside the DOM hierarchy of the parent

component.

Link

React router has also a Link component. Deivas toolkit imports it as routerlink to separate it from the material ui’s Link

component.

Why?
It probably gives you some more props to pass to the material ui’s
link element, for example variant or color.

https://material-ui.com/customization/breakpoints/
https://material-ui.com/components/grid/

Variant

Is a prop of many components

Theme and styles

ThemeProvider

The theme provider wraps the main App component and this way passes the theme variables to all the components of the app.

The components that use these variables are the material UI components. The themeProvider takes a theme property that is the

used theme object.

This is an example of implementing a dark theme.

The Paper element
Notice that in order for this to work you need to wrap
your elements within a Paper element. The paper is the
one that is affected by the palette, it becomes dark and
the typography of wrapped elements is automatically
adjusted to dark theme.

Have in mind that you can get the created theme in your
function components with the useTheme hook.
const theme = useTheme()

Material ui styling

In general, the styles created by material ui (using whatever method like makestyles for example), are injected into the DOM by

the JSS library.

You can use Material-UI's styling solution in your app, whether or not you are using Material-UI components. It is a CSS in JS

solution. It uses JSS at its core. As a css in js solution, it offers many great features (theme nesting, dynamic styles, self-support,

etc.). Material-UI's styling solution is inspired by many other styling libraries such as styled-components and emotion.

⚫ the same advantages as styled-components.

⚫ blazing fast.

⚫ plugin API.

⚫ It uses JSS at its core – a high performance JavaScript to CSS compiler which works at runtime and server-side.

⚫ 15 KB gzipped; and no bundle size increase if used alongside Material-UI.

https://github.com/cssinjs/jss
https://www.styled-components.com/
https://emotion.sh/
https://www.styled-components.com/docs/basics#motivation
https://github.com/mui-org/material-ui/blob/master/packages/material-ui-benchmark/README.md#material-uistyles
https://github.com/cssinjs/jss/blob/master/docs/plugins.md
https://github.com/cssinjs/jss
https://github.com/cssinjs/jss/blob/master/docs/performance.md
https://bundlephobia.com/result?p=@material-ui/styles

There are 3 possible APIs you can use to generate and apply styles, however they all share the same underlying logic.

Hook API, Styled components API and HOC API.

Hook API
import { makeStyles } from '@material-ui/core/styles';

Styled components API

HOC API

Makestyles classes are named like this: makeStyles-root-43. the auto generated class names is done by JSS.

makestyles function uses JSS in the background. For example the useStyles() hook is very similar with the jss.createStyleSheet

function which compiles and renders the stylesheet (see jss notes). If you want to modify jss settings you have to use a

StylesProvider component. If it is so, then the stylesheet is injected into the DOM by the useStyles() hook call inside the

component’s code.

The makeStyles function is a Hook generation function, it returns a hook with which
you can get the css classes inside the js file and assign them to your elements.

See in the docs how you can override classes of the nested elements with a parent
prop.

JSS does not use any inline styles. Inline styles are slow if you overuse them. They are particularly slow in React.

The first argument (style) to the makestyles function is
either an object or a function that generates an object
containing the styles. This object will be linked to the
component.
Notice that if you want access to your theme defined
through the ThemeProvider, you have to use the function
signature which takes the provided theme as its first
argument.

StylesProvider (and JSS)

You only have to use it if you want to modify the default jss settings (as they are defined by material ui). If you want to change

something regarding the JSS library settings, you have to use a StylesProvider component.

The stylesProvider is a component that you use to change how styles are applied to its children, for example it controls css

specificity by controlling when and where is CSS injected into the page. (As I saw, the stylesProvider achieves this by being used

along with a jss object created by the jss package).

CSS specificity: By default, the style tags are injected last in the <head> element of the page. They gain more specificity (because

they are inserted last) than any other style tags on your page e.g. CSS modules, styled components. (you can change that with

the injectFirst prop of the StylesProvider component)

For example, here we want to use the jss-rtl plugin.

https://github.com/alitaheri/jss-rtl

JSS uses plugins to extend its core, allowing you to cherry-pick the
features you need, and only pay the performance overhead for what
you are using.

How is this related with the makestyles? It affects what styles, where
and when are injected into the DOM. It doesn’t define new styles. The
styles definition is done by makestyles (or an equivalent api).

material-ui-pickers

Provides components for picking dates

⚫ Be ready to out-of-box localization, accessibility, timezone management, static typing and useful API

⚫ Designed to be zero-effort compatible with moment, date-fns, luxon and dayjs (with the utils prop)

⚫ Following material design guidelines and provide awesome ui both for desktop and mobile experience.

Tell pickers which date management library it should use
with MuiPickersUtilsProvider. This component takes a utils prop, and
makes it available down the React tree with React Context. It should be
used at the root of your component tree, or at the highest level you wish
the pickers to be available.

Other

Typography

It automatically detects the background color and changes the main color so that it is visible. If you make a button color black

the text will become white automatically.

https://reactjs.org/docs/context.html

CssBaseline

The docs say that its a collection of HTML element and attribute style-normalizations. Basically, it resets your CSS to a consistent

baseline. That way, you can restyle your HTML doc so that you know you can expect all of the elements to look the same across

all browsers. It's based on normalize.js,

Tips

Notice that the sidebar can be open, closed or collapsed. Collapsed is when it appears but it is very narrow.

Devias Kit
A pattern

Not all values are stored in redux. They use context instead. They build providers that provide some variables to their children

through context. In addition to this, they also create some hooks with which you can access these same variables. The reason for

these hooks is to be able to manipulate the values in the javascript code in another part of your code. You can read the data from

the hook and manipulate it as needed. Examples of such providers are SettingsProvider, ThemeProvider, StylesProvider,

Updating the settings

When you press save settings, the currentsettings variable is updated. This variable is part of the SettingsContext Provider value.

Since the value is updated all children of this provider that use that value are rerendered.

There is a TemeProvider child of SettingsProvider. The theme is created by considering the settings values. Whenever the

settings change the theme change. Many components are children of the theme provider and use its theme value. So settings,

change the theme value and the children component that use the theme value are re-rendered.

It uses route-based code splitting

https://github.com/necolas/normalize.css

	React
	Tips
	JSX
	React elements
	Components
	State
	Unidirectional data flow
	Event handling
	Forms
	Refs
	Lifting state up
	Composition
	Containment (props.children)
	Higher Order components
	The render props

	Error boundaries
	Routers
	React Router
	Introduction
	Version 6
	Login example

	Context
	Hooks
	Suspense
	Code splitting
	Caching in react
	Styling components
	Testing
	Misc
	Fetching data
	Misc

	create-react-app
	Concurrent rendering
	Micro frontends
	NextJS

	React + django
	Architecture options
	Project Setup
	Development and Production Frontend django app
	serving static files
	Tips

	Redux
	Tips
	Intro
	react-redux module
	Middleware
	Redux toolkit
	Redux Slices
	redux-thunk
	createAsyncThunk

	Performance optimization
	Error and Message handling
	Essential tips
	Notes
	Misc

	Packages and Templates
	List
	axios
	RTK Query
	Formik
	Other packages
	Material UI
	Layout
	Other Components
	Theme and styles
	Other

	Devias Kit

